
Compiling Prolog Into Microcode:
A Case Study Using the NCR/32-000

Barry Fugin
Yale Patt

Vason Srini
Alvin Despain

Division of Computer Science
University of California

Berkeley, CA 94720

ABSTRACT

A proven method of obtaining high performance for
Prolog programs is to first translate them into the
instruction set of Warren’s Abstract Machine, or W-code
[l]. From that point, there are several models of execution
available. This paper describes one of them:- the
compilation of W-code directly into the vertical microcode
of a general purpose host processor, the NCR/32-000. The
result is the fastest functioning Prolog system known to
the authors. We describe the implementation, provide
benchmark measurements, and analyze our results.

1. Introduction

Substantial current interest in the high performance
execution of Prolog programs demands investigation into the
various alternative models of execution. The classical scheme,
implemented by Warren [II among others, involves translating
the Prolog program first to an intermediate form usually
referred to as the instruction set of Warren’s Abstract
Machine, and from there to the machine language (ISP) of the
host processor. Machine instructions are then interpreted by
host microcode, which controls the data path of the host
microengine. This process is shown in figure 1.

Since three levels of transformation exist between the
Prolog application program and the host microprogram, it is
reasonable to ask what improvement can be obtained by
eliminating one or more of these levels of transformation. One
approach employed by Dobry et. al [2] (see figure 2), was to
eliminate the general purpose host ISP level and translate the
W-code directly into the microcode of a special purpose host
designed specifically to interpret W-code instructions. The
performance advantage of this approach is significant, as will
be discussed in section 6. The disadvantage, obviously, is the
cost of a special purpose processor.

An alternative approach, the subject of this paper, is-to
again eliminate the ISP level translation, but to compile
directly into the microcode of a general purpose host. (Figure
2 also illustrates this scheme). This paper describes the results
of one implementation of this approach, using the vertically
microprogrammable NCR/32-000 microprocessor as the host
microengine.

Permission lo copy without fee all or part of this material is granted
provided that the copies are nor made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

A Method for Executing Prolog

Prolog progam

host n-&code

figure I

Three Translation Schemes
for Executing Prolog

Prolog Proglam

WAM Code

General Purpose
Host Mschiic Code

PLM microcode

General Purpose
Host Microcode

Hardware

(1) (2) (3)

.

(1) Usual tran&tion scheme
(2) Dobry et al.
(3) Fagin et 4.

figure 2

0 1985 ACM 0-89791-172-5/85/0012/0079$00.75
79

This paper is divided into seven sections. Section 2
provides a short overview of the hardware and software
elements that comprise our system; Section 3 discusses the
Warren Abstract Machine mapped onto our host system.
Section 4 describes the host hardware in more detail. Section
5 describes the implementation. Section 6 delineates the
measurements which we performed with our system, compares
these measurements to the alternative schemes shown in
figure 2, and analyses the results of this comparison. Section 7
offers a few brief concluding remarks.

2. Am Overview of the System

2.1. Hardware

We carried out the implementation on an NCR 9300
system, containing a 64K x 16 writable control store, two
megabytes of memory, and the NCR132-000 processor (see
figure 3). The NCR/32-000 is a 32-bit NMOS VLSI
microprocessor. It executes microinstruction8 fetched from
control store, communicating with it over the 16-bit IBUS.
Communication with main memory takes place over a 32-bit
address/data bus, the PMBUS. The 9300 system is connected
to a device port on a VAX 11!750, tuning 4.3 BSD UNIX.

The NCR 9300

Compiled progrurrr are downloaded
from the VAX into WCS, and executed
by the NCR/32000

figure 3

2.2. Software
Three significant pieces of software are used in

transforming Prolog programs to executable NClU32-000
microcode: a Prolog compiler, a microcode compiler, and an
assembler. The entire translation process, from Prolog to
microcode, is shown in figure 4.

The Prolog compiler takes Prolog programs and compiles
them to produce W-code. This W-code is translated into
NCR/32000 microinstructions by the microcode compiler. The
resulting file is then assembled into a binary object file by the
microcode assembler, which is downloaded into control store.

The Prolog compiler was developed at Berkeley as a
Master’s Thesis by Peter Van Roy [3]. It is written in Prolog,
and is invoked from a Cprolog interpreter under 4.3 BSD
UNIX. Considerable documentation on the compiler is
available elsewhere [33 , 141.

The second piece of software, the microcode compiler, is
the heart of the Prolog implementation. It is written in C, and
expands the macroinstructions produced by the Prolog compiler
into NCR/32-000 microinstructions. Each W-code instruction

corresponds to a sequence of NCR/32-000 microoperations. The
microcompiler reads in a W-instruction and prints out the
appropriate microcode flow. Thus the output of the
microcompiler is an ascii file of NCR/32-000 microinstructions
corresponding to the W-coded version of the original Prolog
program.

The third piece of software is the microcode assembler. It
is written in C, and transforms the output of the microcode
compiler into an executable file. This file may then be
downloaded into the control store of the NCR/32-000 and
executed.

Compilation and
Assembly source prclgram

PROLOG

Prolog x Compiks Protog
Compiler into W-code

intern form

figure 4

Some of Warren’s instructions invoke subroutines that
perform basic Prolog functions (for example, unification). In
addition to providing these subroutines, any implementation of
Prolog must also support a minimal subset of builtin functions
that are not part of the pure logical language. The microcode
flows for all these operations are stored in a file called
‘basicsncr”. This file is written in NCR/32-000 microcode,
since most builtin functions cannot be written with Warren’s
instruction set. It must be resident in WCS whenever Prolog
programs are executed.

The builtin function file takes up 3% of WCS; the space
taken up by the various classes of routines within the file is
shown in table 1.

Percent of Reserved Control Store
Area Occupied By Builtin Functions

output routines

Table 1

Arithmetic builtins include the usual arithmetic and
comparison operations. Because arithmetic can be performed
on expressions, the arithmetic category of builtins also includes
code for evaluating structures. The set and access builtins are
simple versions of the Prolog functions “assert” and “retract”.

80

Finally, there must also be a program running on the
VAX while Prolog programs are being executed on the
NCR/32-000. This program is written in C, and is called
“ncrmon”. It monitors the execution of compiled Prolog
programs on the NCR/32-000, assisting in I/O, making
performance measurements, and providing a user interface for
the system.

3. The Abstract Resources of Warren’s Machine

The Warren machine [l] is an abstract architecture; its
abstractions must be mapped onto the concrete resources of a
concrete machine (in this case the NCR/32-000 micromachine).
These abstractions include data types, special registers, and
special areas of memory. This section explains the purpose of
each of these and how they are used.

3.1. Data Types

Prolog manipulates four kinds of data types: structures,
lists, variables, and constants. The type of a data word is
indicated by an appropriate tag. Warren’s machine
specification leaves the representation of each type unspecified;
thus other alternatives exist to the scheme shown here.

3.1.1. Constants

Constants can be of several types, including integers,
atoms, floating point values, and the special constant NIL.
Small integers are stored directly in the data word itself, while
atoms and floating point values contain pointers to the
appropriate item in memory.

3.1.2. Variables

A variable is simply a data word with the variable tag in
the most significant byte, whose contents are an address of
some other data word. Unbound variables are represented by
pointers to themselves.

3.1.3. Lists

Lists are represented by a word with the list tag, pointing
to the first entry of the list. List entries are one word long; our
implementation of them uses &-coding to improve memory
efficiency [5]. Conventional list representation uses two words
for each entry: the car, which contains the list entry itself, and
the cdr, which points to the remainder of the list. With cdr-
coding, if the cdr cell corresponding to a list entry represented
conventionally would point to the next word in memory, then
that cell is omitted. When this is not the case. the cdr cell is
left in memory, with a bit set to indicate that the word is an
explicit cdr cell. This bit is called the cdr bit. Thus, to
determine the location’ of the next entry of a list, one simply
examines the next contiguous word in memory. If the cdr bit
is off, then that cell is the next entry. If it is on, then the
location of the next entry is pointed to by the contents of the
cell.

3.1.4. Structures

Structures are simply lists with principal functors. They
are represented by a word with the structure tag, whose
contents are a pointer to the principal functor of the structure,
followed by the arguments of the structure.

3.2. Special Registers

The current state of a Prolog computation on Warren’s
machine is defined by certain registers containing pointers to
memory. Any memory subsystem supporting Warren’s
abstract machine must have separate address spaces for data
and code; with one exception, the special registers point into
the data space. This memory space is in turn divided into four

areas: the heap, the stack, the trail, and the PDL. The purpose
of each will be explained in more detail after the registers are
discussed.

Warren’s machine makes use of the following special
registers:

Al -
P:
CP:
E:
B:
TR:
H:
HB:
S:

An: the Argument registers
the Program counter
the Continuation Pointer
the Environment pointer
the Backtrack pointer
the Trail pointer
the Heap pbinter
the Heap Backtrack pointer
the Structure pointer

The purpose of each of these registers is explained below.

Al-An

P

CP

E

B

TR

H

HB

S

3.3.

The Argument registers : contain the arguments of a
Prolog goal. For example, to execute the Prolog query
‘d(4,5,6)?“, registers Al, A2, and A3 would be loaded
with the tagged words representing the constants 4, 5,
and 6 respectively, and then the code for procedure d
would be entered. For our implementation of Prolog, n =
8.

The Program pointer: contains the address of the next
instruction to execute.

The Continuation Pointer: contains the address of the
next instruction to execute should the current goal
succeed. For example, when execution begins for the code
for procedure “h” in the clause “AX) :- g(X), h(X), i(X)“,
the CP would contain the address of the code
corresponding to the call to i. In other words, the CP
functions like a return pointer for a subroutine call.

The Environment pointer: contains the address of the last
“environment” pushed on the stack. (Environments will
be explained shortly).

The Backtrack pointer: contains the address of the last
“choice point” pushed on the stack. (Choice points will
also be explained shortly).

The Trail pointer: points to the top of the trail.

The Heap pointer: points to the top of the heap.

The Heap Backtrack Pointer: the top of the heap at the
time the last choice point was placed on the stack (i.e. the
value of H corresponding to B).

The Structure Pointer: Used to address elements of
structures and lists on the heap. Points to the current
element of a structure or list being addressed.

Data Memory Allocation

The data memory is partitioned into four stacks: the
control stack, the heap, the trail, and the push-down list, or
PDL.

3.3.1. The Control Stack

The control stack (hereafter called “the stack”) is the area
in memory used for storing control information. Two kinds of
objects may appear on the stack: environments, and choice
points.

81

3.3.1.1. Environments

An environment represents the saved state of a’Prolog
clause: it contains pertinent register .values, and what are
known as “permanent” variables. Permanent variables are
variables needed by more than one goal lin the body of a clause;
they must be saved so that succeeding goals can access them.

For example, consider the following Prolog clause:

AX,Y) :- g(X), h(X,Z>.

At the beginning of executing the code corresponding to
this clause, an environment will be allocated for it on the
stack, and the data word representing the variable X would
will be stored within it. Thus, after executing the code for the
procedure g, h will be able to access X by referring to the
location of X on the stack. X is a “permanent” variable
because it occurs more than once in a clause, and its last
occurrence is after the first goal. If its value were not saved in
an environment on the stack, other goals would not be able to
reference it.

By contrast, the clause

f(X,Y) :- g(X), h(Z).

has no permanent variables, because the second occurrence of
the variable X is in the first goal. The clause

AX,Y) :- g(Z), h(W).

similarly has no permanent variables, because no goal requires
access to the variables of another. Formally, a variable is
temporary if it occurs in at most one goal of a clause, where
the head is considered part of the first goal. All variables that
are not temporary are permanent.

Environments also contain the values of certain registers,
to enable restoration of the state of a computation when the
last goal in the clause succeeds. Environments contain the
following register values:

CP : where to continue once clause succeeds
E : location of last environment on stack
N : size of last environment
B : location of last choice point

3.3.1.2. Choice Points

A choice point is a group of data words containing
sufficient information to restore the state of a computation if 3

goal fails, and to indicate the next procedure to try. Choice
points are placed on the stack by special instructions when 3

procedure is entered that contains more than one clause that
can unify with the current goal. For example, as the following
Prolog program fragment is executed

g(X) :- RX), h(X, X1.
g(X) :- a(X), b(X, Y).

g(X)?

3 choice point would be placed on the stack when the first
clause is entered, because should it fail an alternative clause
exists which is to be tried as well.

Choice points contain the following register values:

An: the contents of the argument registers
E : location of last environment
CP : address of next clause to execute should this one succeed
B : location of previous choice point
TR: the value of the trail pointer when choice point built
H: the top of the heap when choice point built
N: the number of permanent variables in the environment
L: address of next clause to try should current goal fail.

3.3.2. The Heap

The heap is the area of data memory used for the storage
of lists and structures, which are too cumbersome to be kept in
environments on the control stack. The primary purpose of the
heap is for the storing of lists and structures. The choice of
name for this area of memory is unfortunate, because it is
actually allocated incrementally like a stack, and deallocated
in variable size blocks.

3.3.3. The Trail

When a variable becomes bound during the course of a
Prolog program, it may become necessary to undo the binding
when backtracking is done. Thus some method is needed for
keeping track of all bindings that are to be undone when the
current goal fails, so that the variables they refer to can be
unbound again, For example, in the Prolog program

f(a).
f(b).
g(b).

f(X), g(X)?

X would first be bound to a, but “g(a)” would have no solution.
Thus the binding of X to 3 must be undone. X will then unify
with b, and “g(b)” will succeed.

A small stack called the trail is used to handle the
necessary bookkeeping for bindings that will have to be
undone upon goal failure. This stack is addressed by the TR
register. When a binding is trailed, 3 pointer to the variable

just bound is pushed onto the trail, (in the previous example a
pointer to the variable X), and the TR register incremented.
Upon goal failure, all variables pointed at by pointers on the
trail, from the top of the trail down to the previously saved TR
value in the current choice point, are reset to unbound
variables. This is done 3s part of the ‘fail’ operation, explained
in the section on basic operations.

It should be noted that not all bindings need to be trailed,
and hence some runtime optimization is possible. Suppose the
variable being bound is on the stack. If it is located above the
current choice point (assuming the stack grows upwards) then
it will be thrown away on goal failure; hence the binding will
not have to be explicitly undone. Similarly, if the variable
being bound is on the heap, then if it is located above the
address in the HB register (assuming the heap grows upwards)
then it will be discarded on goal failure. Thus whenever a
binding is made, we compare its address with the appropriate
register (B or HB). Only if the address is less than the B
register (for a variable located on the stack) or the H register
(for variables located on the heap) is the address of the
variable pushed onto the trail. This reduces both trail space
and memory traffic, at the cost of extra microcycles when
trailing bindings. Special comparison logic could further
reduce this cost.

3.3.4. The PDL

The PDL is 3 small stack created for the unification of
nested structures and nested lists. Consider the problem of
unifying the lists ‘[a,Cb,c,dl,el’ and ‘[a,[b,c,dl,fl’. Both objects are
lists, and their first elements match. The second element in
each object is also a list, and 3s we traverse down it we find
that each of their elements match. However, elements ‘e’ and
‘f are now inaccessible. They are pointed to by the cdr cell
after the sublist ‘[b,c,d]‘, whose address we neglected to save.
This problem is solved by pushing pointers to points where
unification of a nested data object is to continue onto a stack;
in Warren’s machine, this stack is the PDL. When the end of
a substructure is encountered, the topmost entry on the PDL is
popped off and unification continues at the point that entry

82

indicates.

Either depth first or breadth first traversal of nested
structures is possible. However, since Prolog structures tend to
be long rather than deep, depth first traversal uses less PDL
apace and is hence preferable. With depth first traversal, the
maximum value of the PDL will be the maximum depth of
nesting of a structure in the program, whereas with breadth
first it will be the maximum number of arguments of a
structure or entries in a list. The former tends to be much
smaller than the latter.

For more information on Warren’s machine, see 111 , [61.

4. The NCR 9300 System

A diagram of our host system, the NCR 9300, is shown in

4.1. The CPC

The datapath of the NCR/32000 CPC is shown in figure
4.2. The CPC is controlled by a vertically encoded 16 bit
microinstruction, shown in figure 4.3. The G field always
contains part of the opcode. The H and I fields may contain
either an extended opcode, or may specify operand selection.
The J and K fields are register specifiers that determine the
operands of the instruction. A few instructions require a
trailing I6-bit literal; this is supplied as the L field.

The CPC contains sixteen 32bit general-purpose
registers, referred to collectively as the RSU, or Register
Storage Unit. Four of these registers are byte-addressable.
The source or sink of a microinstruction is usually an RSU
register. These registers are the most imuortant resource of
the NCW32-000, as-we shall see. figure 4.1.’ The major components of the system are the

NCW32-000 CPC (Central Processor Chip), the ISU
(Instruction Storage Unit), and main memory [?I.

c

cbck figure 4.1 Optiond ECC
Cod* Supplied
by AX

figure 4.2

‘The NCR 9300 alao includes an Extended Arithmetic Chip, for floating
point calculations, and an Address Translation Chip, for virtual memory
support. These chips were not part of our implementation, and are not shown
in the figure.

NC:R/32-000

Microinstruction Format

ETIT-I (optional)
figure 4.3

The CPC also contains thirty-two special-purpose
registers, called IRUs, or Internal Register Units. These
include a builtin stack pointer, an indicator array for
preserving the results of conditional tests, and jump registers
for holding branch addresses.

There are ninety-six other register assignments, external
to the CPC, called ERUs or External Register Units. (ERU’s
are not shown in the figure). These units include special
registers that provide support for indirect accessing of the top
128 locations of main memory. These locations are referred to
as the scratchpad; their use will be explained further in the
section on main memory.

An instruction is fetched from ISU at the address stored
in the CR, or control register. The fetched instruction is stored
in the IR, or instruction register. The G field of the instruction
is sent from the IR to address a small on-chip nanocode ROM,
which drives various control points. Other fields of the
instruction address the RSU to determine which registers, if
any, are to be used. The outputs of the RSU may be sent out
to the PMBUS for memory accesses, or sent to the ALU for
computation. The output of the ALU-may be sent back to the
CR if it is used for determining the address of the next
instruction, or it may be used to address the IRU. The results
of ALU operations affect the indicator array, whose contents
may be tested with bit patterns supplied from the current
microinstruction. The result of such a comparison can be used
to modify the contents of the CR.

The NCR/32-000 has a three stage pipeline, in which
instruction fetch, decode, and execution are overlapped. Thus
the control path includes “skip” logic, to void the pipeline when
necessary.

The processor has a 150ns, two-phase clock.

4.2. ISU

The ISU, or Instruction Storage Unit, is a 64K x 16
writahle control store. The CPC accesses the ISU through a 16
bit ISUBUS, multiplexing addresses and data. To run Prolog
programs, assembled code is downloaded directly into the ISU,
for execution by the CPC.

4.3. Main Memory

Currently, our system uses 2 megabytes of main memory,
organized into 32-bit words. The CPC communicates with
main memory over the PMBUS, a 32-bit address/data bus. If a
memory location is to be accessed that is not part of the
scratchpad, its address must be supplied from an RSU specified
by the microinstruction. Thus for most of main memory, extra
instructions are required to generate the address and place it
in the correct RSU. Address generation for the scratchpad,
however, is faster, as we shall see in the next section.

5. Allocating the Resources of the NCR 9300 System

We now show how the concrete resources of our host
system were used to support the abstractions of Warren’s
machine. Since the NCR/32-000 has a 32-bit data path, the
main data element was chosen to be a 32-bit word, with the
upper byte reserved for the tag. Figure 5 shows the tagging
scheme used. While this scheme wastes space, it offers the
advantage of fast determination of the type of a data element,
using the byte addressing and masking capabilities of the
NCR/32-000.

Tagging Scheme

vAR=xolxmml
LlST = xlOGUOO0
STRUCT = xQlOOOO0
CONST(!NT) = xOO10000
CONST(ATOM) = xOO11000

figure 5

Our 9300 system contains two megabytes of memory,
used for the trail, the stack, and the heap. Because we
anticipated needing far more heap space than stack or trail
space, main memory was allocated according to figure 6. The
trail grows down, while the stack and the heap grow up.

Main Memory
Allocation

TRAIL 4

STACK *

HEM

l

.25M

.25M

1.5M

figure 6

To determine the most efficient way to map Warren’s
registers onto those of the NCR/32-000, we examined
approximately 600,000 register references made during
execution of two benchmark sets of Prolog programs, using our
Prolog simulator. The first benchmark set is from Warren’s
thesis 181; we refer to it as the Warren Benchmark Set. The
second set has been developed at Berkeley for exercising all
the instructions of Warren’s machine; we refer to it as the
Berkeley Benchmark Set. Both benchmark sets are shown in
tables 2 and 3.

84

The Warren Benchmark Set

Name Task

nrev reverse 30-element list

qs4 sort 50-element list
palin itemize 25element list
times10 symbolic differentiation
divl0 II

log10 0

ops8
11

query extract info from database

Table 2

The Berkeley Benchmark Set

Name Task

con1 concat [a,b,c] to [d,el
con6 nondeterministic concat
hanoi tower of hanoi, 8 disks
queens queens problem, 4 x 4 board
prif find all primes < 98
mutest prove a theorem
ckt2 design 4-1 MUX using NANDs i

Table 3

The percentage breakdown of register references for these
benchmarks is shown in table 4:

Register References

1 An 27.7%
P 22.1% *
H 12.8%
E 7.5%
B 7.0%

1 CP,N,S,TR,HB 57~ or less

Table 4

* P is the program counter, implicit in the NCR/32000.

Some registers were needed to hold intermediate results,
and others to pass parameters to microroutines. Thus the’
results in the above table led to the allocation of registers
shown in figure 7. Registers 0 and 1 were used as parameter
registers for microsubroutines. Registers 2 and 3 were used for
temporary values, as were registers E and F. Registers 4
through 7 were the Warren argument registers Al-A4, while
the rest of the registers were assigned to the more important
principal registers of Warren’s machine.

NCR/32-000
Register Assignment

cl zz
E 2- -s
141 Al

1 z
E 3 - -1
51 A2

71 A4

Ql CP

Because there are more special registers in Warren’s
machine than will fit in the NCR/32-000 register file, the
scratchpad memory of the 9300 was also used. Unlike the rest
of main memory, which requires an address stored in an RSU
to specify the desired location, the scratchpad can be addressed
either indirectly through special ERU’s or directly through a
field in the microinstruction. Since scratchpad locations do not
require extra microinstructions to set up the desired address, it
was treated specially in the implementation, and was allocated
as shown in figure 8. Locations O-4 are reserved for use by
ECD, the Extended Console Debugger booted out of PROMS
when the system is powered up. Location 4 holds the address
of the base of the stack. Location 5 holds the cut flag, a flag
needed for implementing the Prolog ‘cut’ operator. Locations 6
and 7 are the N and S registers, location 8 holds the mode hit
(used to implement structure copying), and locations 9 and A
are unused. Location B holds the time of execution of the
program (used for performance measurements), and locations
C-F hold the remaining argument registers A5-A8. Finally,
locations lo-3F are used for the PDL, while 40-5F are used for
a microsubroutine stack. The topmost location of this stack is
indicated by IRU26, the NCR/32-000 stack pointer. The
remaining scratchpad locations are unused.

Scratchpad
Allocation

Bgure 8

5.1. Two Sample Microcode Flows
We consider now two examples of microroutines produced

by the microcode compiler: the routines for the W-code
instructions “put-variable Yi,Aj” and “call proc,n”. The form
of “put-variable” instruction discussed here must put an
unbound variable at location Yi, and place a pointer to it in
argument register Aj. The “call proc,n” instruction must load
the number n into the N register, save a pointer to the
following code in the CP register, clear the cut flag, and branch
to the address represented by “proc”.

Both of these flows contain macros referring to various
abstractions of Warren’s machine; “er” for E register, “al” for
register Al, and so forth. These macros are translated by the
microcode assembler into the appropriate bit patterns. To
avoid confusion, the registers of Warren’s machine will be
referred to as abstract registers.

Finally, the microinstructions used in the flows have the
following meanings:

aw
hew
djor
lit
lrhc

8

al

tw

add word
boolean exor word
delayed jump on reg
literal value
load right halfword,

clear left halfword
store
store literal

(used for scratchpad)
transfer word

5.1.1. The Flow For ‘put-variable Yi,Xj’

Let us assume that i and j are bmoth 1. The microcode
compiler will accept the instruction “put-variable Yl,Xl” and
expand it to:

; put-variable Yl,Xl

tw er,scregO
lrhc scregl
lit 10
aw scregO,scregl
tw scregO,al
tw scregO,scregl
8 F,scregl

The first instruction transfers the contents of abstract
register E to scratch register 0. Next, the hexadecimal literal
10 is added to it, computing the location of the variable Yl.
This address is transferred to abstract register al, and to
temporary register 1 as well. The last instruction stores the
contents of the specified register at the address stored in the
register with which it is paired. In the NCR/32-000, odd
numbered registers are paired with their immediate
predecessors, so scratch registers 0 and 1 are paired. Thus the
final instruction stores the address of Y 1 in the location of Yl,
making Yl point to itself, This is how unbound variables are
represented.

5.1.2. The Flow For ‘call proc,n’

Let us assume that n = 2. Upon reading “call proc,2”,
the microcode compiler generates the following:

; call proc,2

lrhc scregl
lit 2
Sl nr,scregl

lrhc cpr
lit $+6
lrhc scrego
lit proc
djor 0,scrego
bew scregl,scregl
sl cutflag,scregl

First, the number 2 is loaded into a temporary register,
and then stored into abstract register N. Note that since N is
actually in scratchpad memory, its address does not have to be
computed ahead of time. An “~1” instruction can be used, in
which the address is supplied as part of the microinstruction.
Next, the address of the following code in the I-stream is
loaded into abstract register CP. The address of “proc”,
computed by the microassembler, is loaded into scratch register
0, and then a delayed branch to that address is executed. The

next two instructions clear scratch register 1, and use the
resulting zero value to clear the cut flag, stored in scratchpad.
The delayed branch then takes effect, and control proceeds to
the address of “proc”.

Implementing Warren’s machine on the NCR/32-000
involved four phases: 1) deciding upon the format for the data
types, 2) allocation of address space and registers, 3)
construction of microroutines for basic Prolog operations, and
4) construction of microroutines for the W-instructions. Steps 1
and 2 were explained in a previous section; here we consider 3
and 4.

Two Prolog functions are not directly accessible to the
user, but are instead called during execution by several W-code
instructions. These “basic” functions are unification and
failure. Since unification and backtracking on failure are
perhaps the two most important features of Prolog and
consequently lie at the heart of any Prolog implementation,
these routines were constructed first. We believed that once
implementing unification and failure was fully understood, the
rest of the Warren Machine would follow easily.

The fourth and longest phase of the project was the
construction and testing of the microroutines for each. of
Warren’s instructions. Fortunately, the semantics of ‘each
instruction are well defined, and have been explained in detail
in previous work [6] , [9]. Constructing the microroutines
consisted of converting the C routines emulating each
instruction in [9] into NCR/32-000 microinstructions, using the
allocation of address space and register resources decided upon
in phase 2. We parenthetically observe that this translation
was sufficiently straightforward to suggest investigation of the
feasibility of automatic construction of the microroutines for
other target architectures.

6. Performance Results

6.1. Measurements

We used the two sets of benchmarks in table 2 and table
3 to measure performance. These programs were compiled,
downloaded, and executed on the NCR/32-000 using the
software described in section 2. Tables 5 and 6 summarize our
measurements and compare them to those obtained for two
other systems: the Berkeley PLM and (where results were
available) Warren’s compiled Prolog running on a DEC-10.
Recall that the Berkeley PLM is a special purpose Prolog
processor that interprets Warren’s instructions directly, while
Warren’s DEC.10 Prolog executes according to the scheme of
figure 1.

#LIPS on Warren Benchmark Set

Name NCR/32 Berkeley PLM DEC-10

nrev
(Is4
palin
times10
divl0
log10
ops8
query

25K 115K
35K 174K
21K 134K
13K 63K
11K 55K
15K 79K
21K 106K
89K 367K

Table 5

9.3K
11.2K
10.5K
7.7K
7.8K
7.8K
11.2K
31.9K

86

#LIPS on Berkeley Benchmark Set

Name NCR/32 Berkeley PLM

con1 53K 305K
con6 1lOK 465K
hanoi 59K 310K
queens 50K 148K
pri2 7K 191K
mutest 20K 89K
ckt2 17K n.a.

Table 6

Since performance on the deterministic concatenate
benchmark seems to be accepted as a standard measure of
Prolog performance, we have included tables 7 and 8, showing
the performance on this benchmark for several known and
planned systems.

Performance Figures for
Deterministic Concatenate,

Existing Systems

Machine System #LIPS

NCR/32
DEC 2060
SUN-2
IBM 3033
VAX-780
LMI/Lambda
VAX-780
VAX-780
VAX-780
SYMBLOICS 3600
PDP 11/70
Z-80
Apple-II

Warren, Compiled
Warren, Compiled
Quintus Compiler
Waterloo
Macrocoded
Uppsala
POPLOG
M-ROLOG
C-PROLOG
Interpreted
Interpreted
MicroProlog
Interpreted

Table 7

Performance Figures for
Deterministic Concatenate,

Planned Systems

53K
43K
40K
27K
15K
8K
2K
2K
15K
1.5K
1K
.12K
.OOt3K

Machine System #LIPS

Berkeley PLM TTUCompiled 425K
TICK & WARREN VLSI 415K
Aquarius I TTLlCompiled 305K
J 5th Gen HPM Microcoded 280K

[SYMBOLICS 3600 Microcoded 1lOK

Table 8

The figures in table 8 warrant some explanation. The
Berkeley PLM measurement is based on simulation, assuming
a memory as fast as the machine itself. The Tick and Warren
figure is estimated, and the Aquarius I figure reflects the
current system with a memory three times slower than that of
the processor. The remaining results are all estimated. Note
that the NCR/32-000 implementation compares quite favorably
with other existing Prolog systems. In fact, this
implementation is the fastest fully functional Prolog known to
the authors. Even after the various research efforts with
faster estimates become viable, it will still remain the fastest
Prolog available on a non-symbolic (i.e. general purpose)
processor.

6.2. Analysis

In this section we discuss where the existing performance
of the system comes from, and where we feel potential
performance was lost. We also discuss barriers to improved
performance.

We believe the performance of this system is due to three
factors: 1) compiling Prolog instead of interpreting, 2)
compiling directly into microcode instead of interpreting
(saving fetch and decode cycles), and 3) the pipelining of the
instructions by the NCR/32-000.

With compiled Prolog, Prolog clauses and structured data
types are represented as sequences of W-code instructions. This
is much more efficient than representing the entire program as
a data structure and traversing it interactively. Looking at
the figures for deterministic concatenate, we see th‘at the beat
results have been reported for compiled systems, while the
poorest results have been reported for interpreted systems.
Thus it is not surprising that compiling Prolog helped improve
performance on the NCR/32-000.

Performance was also achieved by compiling directly into
microcode, as opposed to having the Prolog microroutines
merely resident in microstore and invoked by
macroinstructions. By executing microinstructions directly out
of microstore, the overhead associated with opcode cracking
and reaching the appropriate microcode flow is eliminated.

One obvious disadvantage of this approach is that: it uses
large amounts of microstore. Compiled programs require an
inordinate amount of memory, as shown below:

Compiled Benchmark Size

Name approx. size in bytes

nrev 8K
qs4 8K
palin 16K
diff 16K
query 8K
ckt2 32K
con1 2K
con6 2K
hanoi 2K
mumath 8K
pri2 4K
queens 8K

Table 9

Since the NCR/32-000 addresses at most 64K Is-bit.
microinstructions, and since the original Prolog sources for the
above benchmarks are relatively small, large Prolog programs
will have to be broken up and swapped in to WCS from main
memory. If, however, we can swap microcode concurrently;
then the steadily decreasing cost of memory leads the authors
to conclude that the space/time tradeoff is a good one.

The final source of improved performance is the
pipelining of the NCR/32-000 and the use of delayed branches.
The NCR instruction set provides eleven delayed branching
instructions. These instructions were used whenever possible
in the Prolog microroutines. Judicious use of delayed
branching kept pipeline flushes to a minimum.

87

What limits. further performance gains? To answer this
question, we must consider the process of implementing an
abstract machine architecture. To implement an abstract
architecture efficiently, the host machine should be as closely
mapped to it as possible. The better the mapping, the higher
the performance. When the mapping is less than ideal,
performance is lost as the implementer attempts to make up
for what he does not have, or tries to have one scarce resource
serve two different functions. This probllem came up over and
over again in the course of this project. Thus it is believed
that imperfections in the mapping from Warren’s abstract
machine to the NCR/32-000 are the principal barriers to
improved performance. We now consider some of these.

Warren’s machine has four basic data types, indicated by
a tag. Thus architectural support for tag extraction and
processing is crucial to a successful implementation of
Warren’s machine. Unfortunately, the NCR/32-000 is a
general-purpose microprocessor, and provides relatively little
support of this kind. Only four of its sixteen registers are
byte-addressable, and none are addressable at any smaller
level of granularity. Thus, to determin.e the data type of a
value, it is necessary to first move it into a byte-addressable
register. One must then either use a conditional “jump-on-
register-byte” instruction, or load a literal value into another
byte addressable register and use a “compare-byte”
microinstruction, branching on the result of the comparison.
Both of these operations take extra microcycles, due to the
difficulty of tag extraction from data values. Ideally, one
would want a new microinstruction that does a four-way
branch based on a two-bit field of a data value.

Another performance limitation comes from the scarcity
of registers on the NCR/32-000. In addition to performing at
least some of the functions of the special purpose registers on
Warren’s machine, NC!R/32-000 registers must also be used for
storing temporary values, passing parameters to microroutines,
and holding addresses and data for memory accesses. Thus
some of Warren’s abstract registers cannot be mapped onto real
NCR/32-000 registers, and must instead be located in
scratchpad. (Recall figures 7 and 8). This in turn leads to
wasted microcycles when these registers must be accessed.

One of the more curious features of the NCR132-000 that
hinders Prolog performance (and, perhaps, performance in
general), is the grouping of registers in address/data pairs.
When storing to memory, only the register containing the data
is specified in the instruction: the address where the data is to
be written must be stored in the corresponding data register.
With the Warren machine, however, any of the special
registers could serve as address registers; associating a
separate data register with each one of them would have forced
even more resources out of the register file and onto
scratchpad. Thus the implementer spends a great deal of time
moving addresses and data into paired registers. Currently,
the “store” microinstruction of the NCR/32-000 devotes eight
bits to the opcode, four bits to write-enable byte tags, and four
bits to indicate the data register of the register pair. For
systems where writing individual bytes of memory is not of
interest, the byte-enable tags could be replaced by a four bit
field encoding the data register. The extra complexity
necessary to implement this feature would be negligible, and
would afford a great deal of flexibility to the assembly
language programmer. For systems where the ability of
writing to individual bytes of memory is important, the write-
enable tags could be moved to an external register, which
could be loaded on the previous cycle with a “transfer-out-
external” (TOE) microinstruction (see 171).

In general, further performance improvements are limited
by the general-purpose nature of the NCRi32-000. Prolog is a
symbolic language; achieving high Prolog performance requires
support for symbolic processing. However, it is not necessary
that microprocessors give up their general purpose nature in
order to execute symbolic languages efficiently. By making
modest changes involving support for tagging and a more
flexible instruction set, the NCR/32-000 (and microprocessors
in general) can efficiently execute symbolic languages without
losing performance on other classes of problems.

7. Conclusions

This paper has presented the results of an attempt to
implement Prolog on the NCR/32-000 microprocessor. Using
the results of simulating the execution of Prolog programs, we
mapped the Warren abstract architecture onto the resources of
our NCR/32-000 host, and wrote the required software to
bridge the levels of translation. In so doing, we have been able
to achieve the fastest Prolog currently available. We were also
able to gain insight into how processors might be modified to
support symbolic languages, as well as insight into the
architectural issues involved in supporting Prolog.

Acknowledgements

The authors gratefully acknowledge the work of Tep
Dobry, whose simulator of Warren’s machine made this
investigation possible. This work was partially sponsored by
DARPA, and monitored by Naval Electronic System Command
under Contract No. N00039-84-C-0089 and Contract No.
N0039-83-C-0107. Part of this work was also sponsored by the
California MICRO program. Finally, thanks are due to NCR
Corporation, for their generous donations of equipment and
software.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

D.H.D. Warren, An Abstract Prolog Instruction Set, SRI
International, Menlo Park,CA (1983). Technical Report.

Tep Dobry, A. M. Despain, and Y. N. Patt, “Performance
Studies of a Prolog Machine Architecture,” Proceedings of
the 12th Intl. Symposium on Camp. Arch., (June 1985).

Peter Van Roy, A Prolog Compiler for the PLM,
University of California, Berkeley, CA (August 1984).
Master’s Report.

Wayne Citrin and Peter Van Roy, “Compiling Prolog for
the Berkeley PLM,” Proceedings of the 19th Hawaii
International Conference on System Sciences, (1986). To
appear.

Tep Dobry, Yale Patt, and A. M. Despain, “Design
Decisions Influencing the Microarchitecture For A Prolog
Machine,” MICRO 17 Proceedings, (October 1984).

Barry Fagin and Tep Dobry. “The Berkeley PLM
Instruction Set: An Instruction Set for Prolog,” UCB
Research Report, CS Division, University of California,
Berkeley, (September 1985).

NCR Corporation, NCR132 General Information. 1983.

David H. D. Warren, Applied Logic -- Its Use and
Implement&on as a Programming Tool, University of
Edinburgh, Scotland (1977). Ph.D. Thesis.

Tep Dobry, PLM Simulator Reference Manual, Computer
Science Division, University of California, Berkeley, CA
(July 1984). Technical Note.

88

