

Synergy User Manual And Tutorial

Synergy User Manual and Tutorial

2

Documenting the Synergy Project

Supervised by Dr. Yuan Shi

Compiled by Joe Jupin

syn·er·gysyn·er·gysyn·er·gysyn·er·gy (sǐn r-jē) noun

plural syn·er·giessyn·er·giessyn·er·giessyn·er·gies

1.1.1.1. The interaction of two or more agents or forces so that their combined

effect is greater than the sum of their individual effects.

2.2.2.2. Cooperative interaction among groups, especially among the acquired

subsidiaries or merged parts of a corporation, that creates an enhanced

combined effect.

[From Greek sunergia, cooperation, from sunergos, working together.]

"For it is unworthy of excellent men to lose hours like slaves in the labour of

calculation which could safely be relegated to anyone else if machines were

used."

-Gottfried Wilhelm Leibniz

Synergy User Manual and Tutorial

3

Table of Contents
Introduction

1. History and Limitations of Traditional Computing
Parallel Processing

1. What is parallel processing?
2. Why parallel processing?
3. History and Existing Tools for Parallel Processing

a. History of Parallel Processing
b. Linda
c. Parallel Virtual Machine (PVM)
d. Message Passing Interface (MPI)

4. Parallel Programming Concepts
a. Symmetric MultiProcessor (SMP)
b. Stateless Machine (SLM)
c. Stateless Parallel Processing (SPP)
d. Tuple Spaces
e. Division of labor (sharing workload between workers)
f. Debugging Parallel Programs

5. Theory and Challenges of Parallel Programs and Performance Evaluation
a. Temporal Logic
b. Petri Net
c. Amdahl’s Law
d. Gustafson’s Laws
e. Performance Metrics
f. Timing Models

i. Gathering System Performance Data
ii. Gathering Network Performance Data

g. Optimal Load balancing
h. Availability

About Synergy
1. Introduction to The Synergy Project

a. What is Synergy?
b. Why Synergy?
c. History

2. Major Components and Inner Workings of Synergy
a. What are in Synergy? (Synergy Kernel with Explanation)

3. Comparisons with Other Systems
a. Synergy vs. PVM/MPI
b. Synergy vs. Linda

4. Parallel Programming and Processing in Synergy
5. Load Balance and Performance Optimization

Synergy User Manual and Tutorial

4

6. Fault Tolerance
Installing and Configuring Synergy

1. Basic Requirements
2. Compiling
3. Setup
4. Configuring the Synergy Environment
5. Activating Synergy
6. Creating a Processor Pool

Using Synergy
1. The Synergy System

a. The Command Specification Language (csl) File
b. Synergy’s Tuple Space Objects
c. Synergy’s Pipe Objects
d. Synergy’s File Objects
e. Compiling Synergy Applications
f. Running Synergy Applications
g. Debugging Synergy Applications

2. Tuple Space Object Programming
a. A simple application—Hello Synergy!
b. Sending and Receiving Data—Hello Workers!—Hello Master!!!
c. Sending and Receiving Data Types
d. Getting Workers to Work

i. Sum of First N Integers
ii. Matrix Multiplication

e. Work Distribution by Chunking
i. Sum of First N Integers Chunking Example
ii. Matrix Multiplication Chunking Example

f. Optimized Programs
i. Matrix Multiplication Optimized

3. Pipe Object Programming
4. File Object Programming

Parallel Meta-Language (PML)
1. Automated Parallel Code Generation

Future Directions
Function and Command Reference

1. Commands
2. Functions
3. Error Codes

References
Index

Synergy User Manual and Tutorial

5

Introduction

Red text: Copied and pasted from syng_man.ps by Dr. Shi

The emergence of low cost, high performance uni-processors forces the enlargement of
processing grains in all multi-processor systems. Consequently, individual parallel
programs have increased in length and complexities. However, like reliability, parallel
processing of any multiple communicating sequential programs is not really a functional
requirement.

Separating pure functional programming concerns from parallel processing and resource
management concerns can greatly simplify the conventional ``parallel programming''
asks. For example, the use of dataflow principles can facilitate automatic task
scheduling. Smart tools can automate resource management. As long as the application
dependent parallel structure is uncovered properly, we can even automatically assign
processors to parallel programs in all cases.

Synergy V3.0 is an implementation of above ideas. It supports parallel processing using
multiple ``Unix computers'' mounted on multiple file systems (or clusters) using TCP/IP.
It allows parallel processing of any application using mixed languages, including parallel
programming languages. Synergy may be thought of as a successor to Linda1, PVM2 and
Express3.

Our need to store and process data has been continually increasing for thousands of years.
This need has lead to the development of complex storage, communication, numerical
and processing systems. The information in this section was wholly obtained from
sources freely available on the Internet, which are cited in the references section. Much
of it was obtained from timelines, encyclopedias and academic Web pages. The accuracy
of information collected from the Internet was checked by using multiple corroborating
resources and eliminating contradictory information.

1 Linda is a tuple space parallel programming system lead by Dr. David Gelenter, Yale University. Its
commercial version is distributed by the Scientific Computing Associates, New Heaven, NH.
2 PVM is a message passing parallel programming system by Oak Ridge National Laboratory, University
of Tennessee and Emory University.
3 Express is a commercial message passing parallel programming system by ParaSoft, CA.

Synergy User Manual and Tutorial

6

History and Limitations of Ancient and Traditional

Computing

 The first recognized use of a tool to record the
result of transactions was a device called a tally
stick. The oldest known artifact is a wolf bone
with a series of fifty-five cuts in groups of five
that dates from approximately 30,000 to 25,000
BC. The notches in the stick may refer to the
number of coins or other items that are counted
by some early form of bookkeeping. The
earliest stock markets used tally sticks to record
transactions. The word “stock” actually means a
stout stick. During a transaction the “broker”
would record the transaction for the purchase of
stock on a tally stick and then “break” the stick,
keeping half and giving the other half to the
investor. The two halves would be fit together
at some later time to verify the investor’s
ownership of the shares of stock. In 1734 the
English government ordered the cessation of the
use of tally sticks but they were not completely
abolished until 1826. By 1834 British

Parliament collected a very large number of tally sticks, which the decided to burn in the
fireplace at the House of Lords. The fireplace was “engorged” with tally sticks such that
the fire spread to the paneling and to the neighboring House of Commons, destroying
both buildings, which took ten years to reconstruct.i Other primitive recording devices
included clay tablets, knotted strings, pebbles in bags and parchments. In modern times,
books or legers have been used to record commercial or financial data using more formal
bookkeeping systems, such as the double entry standard that is widely used today.

The first place-valued numerical system, in which both digit and position within the
number determine value, and the abacus, which was the first actual calculating
mechanism, are believed to have been invented by the Babylonians sometime between
3000 and 500 BC. Their number system is believed to have been developed based on
astrological observations. It was a sexagesimal (base-60) system, which had the
advantage of being wholly divisible by 2, 3, 4, 5, 6, 10, 15, 20 and 30. The first abacus
was likely a stone covered with sand on which pebbles were moved across lines drawn in
the sand. Later improvements were constructed from wood frames with either thin sticks
or a tether material on which clay beads or pebbles were threaded. Sometime between

Synergy User Manual and Tutorial

7

200 BC the 14th century, the
Chinese invented a more advanced
abacus device. The typical
Chinese swanpan (abacus) is
approximately eight inches tall and
of various widths and typically has
more than seven rods, which hold
beads usually made from
hardwood. This device works as a
5-2-5-2 based number system,
which is similar to the decimal

system. Advanced swanpan techniques are not limited to simple addition and
subtraction. Multiplication, division, square roots and cube roots can be calculated very
efficiently. A variation of this devise is still in use by shopkeepers in various Asian
countries.ii There is direct evidence that the Chinese were using a positional number
system by 1300 BC and were using a zero valued digit by 800 AD.

Sometime after 200 BC, Eratosthenes of Cyrene (276-194 BC) developed the Sieve of
Eratosthenes, which was a procedure for determining prime numbers. It is called a sieve
because it strains or filters out all non-primes. The process is as follows:

1. Make a list of all integers greater than one and less than or equal to n
2. Strike out the multiples of all primes less than or equal to the square root of n.
3. The numbers that are left are the primes.

The table below show the result for n = 50 with primes in the white squares.

 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Eratosthenes is also credited with being the first person to accurately estimate the
diameter of the Earth and also served as the director of the famed Library of Alexandria.iii

Synergy User Manual and Tutorial

8

The Sieve of Eratosthenes is one of the first well-
documented uses of an efficient algorithm-type solution
to solve a complex problem. The word algorithm is
derived from the Latin derivation of Al-Khowarizmi’s
name. Muhammad ibn Musa al-Khwarizmi was an
Arab mathematician of the court of Mamun in Baghdad
born before 800 AD in central Asia, now called
Uzbekistan. Along with other Arabic mathematicians,
he is responsible for the proliferation of the base-ten
number system, which was developed in India. His
book on the subject of Hindu numerals was later
translated into the Latin text Liber Algorismi de
numero Indorum. While a scholar at the House of
Wisdom in Baghdad, he wrote Hisãb al-jabr w'al-
muqãbala (from which the word "algebra" is derived).
Lose translations of this title could be “the science of
transposition and cancellation” or “the calculation of
reduction and restoration.” He devised a method to
restore or transpose negative terms to the other side of
an equation and reduce (cancel) or unite similar terms

on either side of the equation. Transposition means that a quantity can be added or
subtracted (multiplied or divided) from both sides of an equation and cancellation means
that if there are two equal terms on either side of an equation, they can be altogether
cancelled. The following is a translation of a popular verse in Arab schools from over six
hundred years ago:

Cancel minus terms and then

Restore to make your algebra;

Combine your homogeneous terms

And this is called muqabalah.

Robert of Chester translated this work into Latin in 1140 AD. Similar methods are still in
use in modern algebraic manipulations, which came in the sixteenth century from
Francois Viète. Al-Khowarizmi also claimed in his book Indorum (the book of Al-
Khowarizmi) that any complex mathematical problem could be broken down into
smaller, simpler sub-problems, whose results could be logically combined to solve the
initial problem. This is the main concept of an algorithm. Latin translations of his work
contributed to much of medieval Europe’s knowledge of mathematics. In 1202,
Leonardo of Pisa (otherwise known by his nickname Fibonacci) (c. 1175-1250) wrote the

A postage stamp issued by the USSR in
1983 to commemorate the 1200th
anniversary of Muhammad al-
Khowarizmi. Scanned by Donald Knuth,
one of the legends of computer science.

Synergy User Manual and Tutorial

9

historic book Liber Abaci or “The Book of Calculation”, which was his interpretation of
the Arabic-Hindu decimal number system that he learned while traveling with Arabs in
North Africa. This book was the first to expose the general public, rather than academia,
to the decimal number system, which quickly gained popularity because of its clear
superiority over existing systems. iv

The Greek astronomer,
geographer and
mathematician
Hipparchus (c. 190 BC
– 120 BC) likely
invented the
navigational instrument
called an astrolabe.
This is a protractor-like
device consisting of a
degree marked circle

with a center attached rotating arm. When the zero degree mark is aligned on the horizon
and a celestial body is sighted along the movable arm, the celestial body’s position can be
read from the degree marks on the circle. The sextant eventually replaced this device
because the sextant measured relative to the horizon and not the device itself, which
allowed more accurate measurements of position for latitude.

Sometime between 1612 and 1614, John Napier (1550 -
1617), born at Merchiston Tower in Edinburgh,
Scotland, developed the decimal point, logarithms and
Napier’s bones—an abacus for the calculation of
products and quotients of numbers. Hand performed
calculations were made much easier by the use of
logarithms, which made possible many later scientific
advancements. Mirifici Logarithmorum Canonis
Descriptio or in English "Description of the Marvelous
Canon of Logarithms", his mathematical work, contained
thirty-seven pages of explanatory matter and ninety
pages of tables, which furthered advancements in
astronomy, dynamics and physics. Based on Napier’s
algorithms in 1622, William Oughtred (1574 - 1660)

invented the circular slide rule for calculating multiplication and division. In 1632 he
published Circles of Proportion and the Horizontal Instrument, which described slide
rules and sundials. By 1650 the sliding stick form of the slide rule was developed. In

Synergy User Manual and Tutorial

10

1624, Henry Briggs (1561 - 1630) published the first set of modern logarithms, and in
1628, Adrian Vlacq published the first complete set of modern logarithms.

In 1623,
Wilhelm
Schickard (1592
- 1635) invented
what is believed
to be the first
mechanical
calculating
machine (left). This device used a “calculating
clock” with a gear driven carry for mechanism to
calculate the multiplication of multi-digit numbers

in higher order positions. Between 1642 and 1643, at the age of 18, Blaise Pascal (1623 -
1662) created the “Pascaline” (right) a gear driven adding machine, which was the first
mechanical adding/subtracting machine. Pascal developed this machine to help his father
with his work—a tax collector. He discovered how to mechanically carry numbers to the
next high order by causing the higher order gear to advance one tooth for a full rotation
(ten teeth) of the next lower ordered gear. This method is similar to that of old pinball
machines or gas pumps with rotating number counters. These devices were never placed
into commercial service due to high cost of manufacture. Approximately fifty Pascalines
were constructed and could handle calculations with up to eight digits.v

In 1666 Sir Samuel Morland (1625-1695) invented a mechanical calculator that could add
and subtract. This machine was designed for use with English currency but had no
automatic carry mechanism. Auxiliary dials recorded numerical overflows and had to be
re-entered as addends.vi In 1673, Gottfried Wilhelm von Leibniz (1646 - 1716) designed
a machine called the “Stepped Reckoner” that could mechanically perform all four
mathematical operations using a stepped cylinder gear, though the initial design gave
some wrong answers. This machine was never mass-produced because the high level of
precision needed to manufacture it was not yet available.vii In 1774 Philipp-Matthaus
Hahn (1739 - 1790) constructed and sold a small number of mechanical calculators with
twelve digits of precision.

The advent of the Industrial Revolution, just prior to the start of the nineteenth century,
ushered in a massive increase in commercial activity. This created a great need for
automatic and reliable calculation. Charles Xavier Thomas (1791 - 1871) of Colmar,
France invented the first mass-produced calculating machine, called the Arithmometer
(left) in 1820. His machine used Leibniz’s stepped cylinder as a digital-value actuator.
However, Thomas’ automatic carry system worked in every possible case and was much

Synergy User Manual and Tutorial

11

more robust than any
predecessor. This machine was
improved and produced for
decades. Other models, designed
by competitors, eventually
entered the marketplace.

In 1786, J. H. Mueller, of the
Hessian army, conceived the
“Difference Engine” but could
not raise the funds necessary for
its construction. This was a
special purpose calculating

device that, given the differences between certain values where the polynomial is
uniquely specified, can tabulate the polynomial values. This calculator would be useful
for functions that can be approximated polynomially over certain intervals. The
realization of the Difference Engine’s mechanical computer prototype design would not

occur until 1822, when conceived by
Charles Babbage (1792 - 1871). In
1832, Babbage and Joseph Clement
built a scaled-down prototype that could
perform operations on 6-digit numbers
and 2nd order or quadratic polynomials.
A full-sized machine would be as big as
a room and able to perform operations
on 20-digit numbers and 6th order
polynomials. Babbage’s Difference
Engine project was eventually canceled
due to cost overruns. In 1843, George
Scheutz and his son Edvard Scheutz, of
Stockholm, produced a 3rd order engine
with the ability to print its results. From
1989-91, a team at London's Science
Museum built a fully functional
Difference Engine based on Babbage’s
latest (1837), improved and simpler
design, using modern construction
materials and techniques. The machine

could successfully operate on 31-digit numbers and 7th order differences.

Synergy User Manual and Tutorial

12

 The Difference Engine uses Sir Isaac Newton’s method of differences. It works as
follows: Consider the polynomial p(x) = x2 + 2x + 1 and tabulate the values for p(0),
p(0.1) , p(0.2) , p(0.3) , p(0.4). The table below contains the results of the polynomial
values in the first column, the differences of each consecutive set of polynomial results in
the second column, and the differences of each consecutive set of differences from the
second column in the third column. For a 2nd order polynomial, the third column will
always contain the same value.
Likewise, for an nth order
polynomial, column n+1 will
always have the same value. To
find p(0.5), start from the right
column with value 0.02 and
subtract this from the second
column to get -0.29. Then
subtract this value from the first
column to get 2.25, which is the
solution to p(0.5). This can be
continued incrementally for greater p(x), indefinitely, by updating the table and repeating
the algorithm.

Babbage also invented the
Analytical Engine, which
was the first computing
device designed to use read-
only memory, in the form of

punched cards, to store programs. This general-
purpose mathematical device was very similar to
electronic processes used in early computers. Later
designs of this machine would perform operations on
40-digit numbers. The machine had a processing unit
called the “mill” that contained two main
accumulators and some special purpose auxiliary
accumulators. It also had memory area called the
“store”, which could hold approximately 100 more
numbers. To accept data and program instructions,
the Analytical Engine would be equipped with
several punch card readers in which the cards were
linked together to allow forward and reverse reading.
These linked cards were first used in 1801 by Joseph-
Marie Jacquard to control the weaving patterns of a
loom. The machine could perform conditional

p(0) = 1

 1 – 1.21 = -0.21

p(0.1) = 1.21 -0.21 – (-0.23) = 0.02

 1.21 – 1.44 = -0.23

p(0.2) = 1.44 -0.23 – (-0.25) = 0.02

 1.44 – 1.69 = -0.25

p(0.3) = 1.69 -0.25 – (-0.27) = 0.02

 1.69 – 1.96 = -0.27

p(0.4) = 1.96

This device impresses a zinc
block, which prints the results
of calculations on paper. This
could be considered the first
standalone computer printer.

Synergy User Manual and Tutorial

13

branching called “jumps”, which allowed it to skip to a desired instruction. The device
was capable of using a form of microcoding by using the position of studs on a metal
barrel called the “control barrel” to interpret instructions. This machine could calculate
an addition or subtraction operation in about three seconds, and a multiplication or
division operation in about three minutes.

In 1843, Augusta Ada Byron (1815 - 1852), Lady
Lovelace, mathematician, scientist and daughter of the
famed poet Lord Byron, translated an article from
French about Babbage’s Analytical Engine, adding her
own notes. Ada composed a plan for the calculation of

Bernoulli numbers, which is considered to be the first
ever “computer program.” Though because it was
never built, the algorithm was never run on Analytical
Engine. In 1979, the U.S. Department of Defense
honored the world’s first “computer programmer” by
naming its own software development language as
“Ada.”viii

George Boole (1815 -
1864) (right) wrote, "An
Investigation of the Laws
of Thought, on Which Are
Founded the Mathematical

Theories of Logic and Probabilities" in 1854. This article
detailed Boole’s new binary approach, which processed only
two objects at a time (in a yes-no, true-false, on-off, zero-one
type manner), to logic by incorporating it into mathematics
and reducing it to a simple algebra, which presented an
analogy between symbols that represent logical forms and
algebraic symbols. Three primary operations were defined based on those in Set Theory:
AND—intersection, OR—union, and NOT—compliment. This system was the
beginning of the Boolean algebra that is the basis for many applications in modern
electronic circuits and computation.ix Though his idea was either ignored or criticized by
many of his peers, twelve years later, an American, Charles Sanders Peirce, described it
to the American Academy of Arts and Sciences. He spent the next twenty years
expanding and modifying the idea, eventually designing a basic electrical logic-circuit.

Processing and storage were not the only advancements
made prior to the 20th century. There were also great
improvements in communications technology. Samuel

Synergy User Manual and Tutorial

14

Morse (1791 -1872) conceived the telegraph in 1832
and had built a working model by 1835. This was the
first device to communicate through the use of
electricity. The telegraph worked by tapping out a
message from a sending device (right) in Morse code,
which was a series of dots-and-dashes that
represented letters, numbers, punctuation and other
symbols. These dots-and-dashes were converted into
electrical impulses and sent, on the wire, to a receiver
(left). The receiver converted the electrical impulses to an audible sound that represented
the original dots-and-dashes. In 1844, he sent a signal from Washington to Baltimore
over this communication device. By 1854 there was 23,000 miles of telegraph wire being
used within the United States. This provided a much more efficient form of
communication that greatly affected national socio-economic development.x In 1858, a
telegraph cable was run across the Atlantic Ocean, providing communication service
between the U.S. and England for less than a month. By 1861 a transcontinental cable
connected the East and West coasts of the U.S. and by 1880, 100,000 miles of undersea
cable had been laid.

The next great advancement in
communication was Alexander
Graham Bell’s (1847 - 1922)
invention of the "electrical speech
machine" or telephone in 1876.
This invention was developed from
improvements that Bell made to
the telegraph, which allowed more
than one signal to be transmitted
over a single set of telegraph wires,
simultaneously. Within two years,
he had set up the first telephone
exchange in New Haven,
Connecticut. He had established
long distance connections between
Boston, Massachusetts and New

York City by 1884. The telecommunication industry would eventually reach almost
every locality in the country, then the world. Bell’s original venture evolved into larger
companies and in 1881 American Bell Telephone Co. Inc. purchased Western Electric
Manufacturing Company to manufacture equipment for Bell. In 1885, American
Telephone and Telegraph Company (AT&T) were formed to extend Bell system long
lines across the U.S. and in 1899 AT&T became the parent company of Bell, assuming

Synergy User Manual and Tutorial

15

all assets. The Western Electric Engineering Dept. was organized in 1907 and a research
branch to do scientific research and development was organized in 1911. On December
27, 1925, Bell Telephone Laboratories was created to consolidate the research labs from
AT&T and Western Electric, which remained a wholly owned subsidiary of AT&T after
the divestiture of the seven regional Bell companies. Bell Laboratories would eventually
become one of the world’s premier communication and computer research centers. One
of Bell Labs contributions to computing was the development of UNIX by Dennis
Ritchie and Kenneth Thomson in 1970. In 1991, AT&T acquired NCR, formerly
National Cash Register, which became AT&T Global Information Solutions.xi

The explosion in population growth between 1880 and 1890,
due to increased birth rates and immigration, created a great
dilemma for the Census Bureau. During this time, Herman
Hollerith (right) was a statistician for the Census Bureau and
was responsible to solve problems related to the processing
of large amounts of data from the 1880 US census. He was
attempting to find ways of manipulating data mechanically as
was suggested to him by Dr. John Shaw Billings. In 1882,
Hollerith joined MIT to teach mechanical engineering and
also started to experiment with Billings’ suggestion by
studying the operation of the Jacquard loom. Though he

found that the loom’s operation was not useful for processing data, he determined that the
punched cards were very useful for storing data. In 1884, Hollerith devised a method to
convert the data stored on the punched cards into electrical impulses using card-reading
device. He also developed a typewriter-like device to record the data on the punched
cards, which changed very little in its design over the next 50 years. The card readers
used pins that pass through the holes in the cards creating electrical contacts, where the
impulses from these contacts would activate mechanical counters to manipulate and tally
the data. This system was successfully demonstrated in 1887 by tabulating mortality
statistics and won the bid to be used to tabulate the 1890 Census data.

Hollerith had Pratt and Whitney manufacture the
punching devices and the Western Electric
Company to manufacture the counting devices. The
Census Bureau’s new system was ready by 1890
and processing the first data by September the same
year. The count was completed by December 12,
1890 revealing that the total population of the
United States to be 62,622,250. The count was not
only completed eight times faster than if it was
performed manually, it also allowed the gathering

Synergy User Manual and Tutorial

16

of more data than was possible before about the country’s population, such as number of
children in family, etc. Hollerith founded the Tabulating Machine Company in 1896 to
produce his improved counting machines and other inventions, one of which
automatically fed the cards into the counting machines. His system was used again for
the 1900 Census but because Hollerith demanded more that the cost to count the data by
hand, the Census Bureau was forced to develop its own system. In 1911, Hollerith’s
company merged with another company, becoming the Computer Tabulating Recording
Company but was nearly forced out of the counting machine market due to fierce
competition from new entrants. Hollerith retired his position of consulting engineer in
1921. Because of the efforts Thomas J Watson, who joined the company in 1918, the
company reestablished its position as a leader in the market by 1920. In 1924, Computer
Tabulating Recording Company was renamed as International Business Machines
Corporation (IBM). By 1928, punch card equipment will be attached to computers as
output devices and will also be used by L. J. Comrie to calculate the motion of the
moon.xii

In 1895, Italian physicist and inventor
Guglielmo Marconi sent the first
wireless message. Prior to his first
transmission, Marconi studied the works
of Heinrich Hertz (1857-1894) and later
started to experiment with Hertzian
waves to transmit and receive messages
over increasing distances without the use
of wires. The messages were sent in
Morse code. He patented his invention
in 1896. After years of
experimentation and improvement,
especially with respect to distance, in

1897 Marconi named his company as the Wireless Telegraph and Signal Company. After
a series of takeovers and mergers, this company eventually became part of the General
Electric Company (GEC), which was eventually renamed Marconi Corporation plc in
2003. xiii

In 1904, radio technology was improved by the
invention of the two-electrode radio rectifier, which was
the first electron tube, also called the oscillation valve or
thermionic valve (left). It is credited to John Ambrose
Fleming, a consultant to the Marconi Company. This
device was much more sensitive to radio signals then its
predecessor, the coherer. This invention inspired all

Synergy User Manual and Tutorial

17

subsequent developments in wireless transmission. In
1906, Lee de Forest improved the thermionic valve by
adding a third electrode and a grid to control and amplify
signals, creating a new device called an Audion. This
device was used to detect radio waves and convert the
radio frequency (RF) to an audio frequency (AF), which
could be amplified through a loudspeaker or headphones.
By 1907 gramophone music was regularly broadcast from
New York over radio waves.xiv

In 1907, both A. A.
Campbell-Swinton
()(left) and Boris
Rosing ()
independently suggest
using cathode ray tubes to transmit images. Though
intended for television, the cathode ray tube has made
a valuable contribution to computing by providing a
human readable interface with computational devices.
In a letter to Nature magazine, Swinton describes first
full description of an all-electronic television system
as:

“Distant electric vision can probably be solved by the

employment of two beams of kathode rays (one at the

transmitting and one at the receiving station)

synchronously deflected by the varying fields of two

electromagnets placed at right angles to one another and energised by two alternating

electric currents of widely different frequencies, so that the moving extremities of the two

beams are caused to sweep synchronously over the whole of the required surfaces within

the one-tenth of a second necessary to take advantage of visual persistence. Indeed, so

far as the receiving apparatus is concerned, the moving kathode beam has only to be

arranged to impinge on a suitably sensitive fluorescent screen, and given suitable

variations in its intensity, to obtain the desired result.”

In 1927, during a television demonstration, Herbert Hoover’s face is the first image
broadcast in the U.S., using telephone wires for the voice transmission. Vladimir
Zworykin invented the cathode ray tube (CRT) in 1928. It eventually became the first
computer storage device. Color television signals were successfully transmitted in 1929
and first broadcast in 1940.

Synergy User Manual and Tutorial

18

In 1911, while studying the effects of extremely cold temperatures on metals such as
mercury and lead, physicist Heike Kamerlingh Onnes discovered that they lost all
resistance at certain low temperatures just above absolute zero. This phenomenon is
known as superconductivity. In 1915, another physicist, Manson Benedicks, discovered
that alternating current could be converted to direct current by using a germanium crystal,
which eventually leads to the use of microchips. In 1919, U.S. physicists William Henry
Eccles (1875 - 1966) and F.W. Jordan () invented the flip-flop, the first electronic
switching electric circuit, which was critical to high-speed electronic counting systems.
The flip-flop is a digital logic hardware circuit that can switch or toggle between two
states controlled by its inputs, which is similar to a one-bit memory. The three common
types of flip-flop are: the SR flip-flop, the JK flip-flop and the D-type flip-flop (shown
below).

In 1925, Vannevar
Bush (1890 - 1974)
developed the first
analog computer to
solve differential
equations. These
analog computers
were mechanical
devices that used
large gears and other
mechanical parts to
solve equations. The
first working machine
was completed in
1931 (left). In 1945,
he published an

article in the Atlantic Monthly called, "As We May Think, which described a theoretical
device called a memex. This device uses a microfilm search system, which is very
similar to hypertext, using a concept that he called associative trails. His description of
the system is:

Synergy User Manual and Tutorial

19

"The owner of the memex let us say, is interested in the

origin and properties of the bow and arrow. Specifically he

is studying why the short Turkish bow was apparently

superior to the English long bow in the skirmishes of the

Crusades. He has dozens of possibly pertinent books and

articles in his memex. First he runs through an

encyclopedia, finds an interesting but sketchy article,

leaves it projected. Next, in a history, he finds another

pertinent item, and ties the two together. Thus he goes,

building a trail of many items. Occasionally he inserts a

comment of his own, either linking it into the main trail or

joining it by a side trail to a particular item. When it

becomes evident that the elastic properties of available

materials had a great deal to do with the bow, he branches

off on a side trail which takes him through textbooks on

elasticity and physical constants. He inserts a page of longhand analysis of his own. Thus

he builds a trail of his interest through the maze of materials available to him."

In 1934, Konrad Zuse (1910 - 1995) was an engineer
working for Henschel Aircraft Company, studying
stresses caused by vibrations in aircraft wings. His
work involved a great deal of mathematical calculation.
To aid him in these calculations, he developed ideas on
how machines should perform calculations. He
determined that these machines should be freely
programmable by reading a sequence of instructions
from a punched tape and that the machine should make
use of both the binary number system and a binary logic
system to be capable of using binary switching
elements. He designed a semi-logarithmic floating-
point unit representation, using an exponent and a
mantissa, to calculate both very small and very large
numbers. He developed a “high performance adder”,
which included a one-step carry-ahead and precision

arithmetic exceptions handling. He also developed an addressable memory that could
store arbitrary data. He devised a control unit to control all other devices within the
machine along with input and output devices that convert numbers from binary to
decimal and vice versa.

By 1936 he completed the design for the Z1 computer (top next page), which he
constructed in his parents’ living room by 1938. This was a completely mechanical unit

Synergy User Manual and Tutorial

20

based on his previous design.
Though unreliable, it had the
ability to store 64 words, each 22
bits in length (8 bits for the
exponent and sign, and 14 bits for
the mantissa), in its memory,
which consisted of layers of metal
bars between layers of glass. Its
arithmetic unit was constructed
from a large number of mechanical
switches and had two 22-bit
registers. The machine was freely
programmable with the use of a
punched tape. The device also had
the prescribed control unit and

addressable memory, making it the world’s first programmable binary computing
machine, with a clock speed of 1-Hertz. The picture above is a topside view of the Z1,
which is very similar in appearance to a silicon chip. At first the machine was not very
reliable. However, it functioned reliably by 1939.

The Z2 was an experimental
machine similar to the Z1 but
used 800 relays for the
arithmetic unit instead of
mechanical switches. This
machine proved that relays
were reliable, which prompted
Zuse to design and build the Z3
using relays. The Z3 was
constructed between 1938 and
1941 in Berlin. The Z3 used
relays for the entire machine
and had a 64-word memory,
consisting of 22-bit floating-
point numbers. The Z3 was the

first reliable, fully functional, freely programmable computer based on the binary
floating-point number and a switching system, which had the capability to perform
complex arithmetic calculations. It had a clock speed of 5.33 Hertz and could perform a
multiplication operation in 3 seconds. This machine contained all the components except
the ability to store the program in the memory together with the data that was described
by the von Neumann et al machine in 1946. In 1998, Raul Rojas proved that the Z3 was

Synergy User Manual and Tutorial

21

a truly universal computer in the sense of a Turing machine. The picture above is Zuse
along with his 1961 reconstruction of the Z3. Allied bombing, during World War II,
destroyed the original Z3.

An example program from “The Life and Work of Konrad Zuse” Web Site, authored by
Horst Zuse, listed in the references section, for the Z3 is the calculation of the
polynomial: ((a4x + a3)x + a2)x + a1, where a4, a3, a2, and a1 would first be loaded into
the memory cells 4, 3, 2, and 1.

Lu To call the input device for the variable x
Ps 5 To store variable x in memory word 5
Pr 4 Load a4 in Register R1
Pr 5 Load x in Register R2
Lm Multiply: R1 := R1 x R2
Pr 3 Load a3 in Register R2
Ls1 Add: R1 := R1 + R2
Pr 5 Load x in R2
Lm Multiply: R1 := R1 x R2
Pr 2 Load a2 in Register R2
Ls1 Add: R1 := R1 + R2
Pr 5 Load x in Register R2
Lm Multiply: R1 := R1 x R2
Ppr 1 Load a1 in Register R2
Ls1 Add: R1 := R1 + R2
Ld Shows the result as a decimal number

The program above is very
similar to the assembly code
that is used in modern
computers. From 1942 to
1946 Zuse began to develop
ways to program computers.
To aid engineers and
scientists in the solution of
complex problems, he
developed the Plankakül
(plan calculus) programming
language. This precursor to
today’s algorithm-type
languages was the world’s
first programming language
and was intended for a

logical machine. A logical machine could do more than just numerical calculations, of
which the algebraic machines (Z1, Z2, Z3 & Z4) that he had previously designed are
limited. The picture on the left is the Z4 model, completed in 1945 and reconstructed in

Synergy User Manual and Tutorial

22

1950, which used a mechanical memory, similar to that in the Z1, and had 32-bit words.
By 1955, this machine had the added abilities to call subprograms, through a secondary
punch tape reader, and use a conditional branch instruction.

In 1942, Zuse built the S1, a special purpose computer to measure the wing surface area
of airplanes, with 600 relays and 12-bit binary words. This machine was destroyed in
1944. Zuse improved this model with the construction of the S2. This machine used
approximately 100 clock gauges to automatically scan the surface of wings. This
computer was most likely the first machine to use the concept of a process. It was
destroyed in 1945. In 1949, he founded Zuse KG, Germany’s first computer company.
In 1952, Zuse KG constructed the Z5 for optical calculations, an improved version of the
Z4, which was about six times faster. It had many punch card readers for data and
program input, a punch card writer to output data and could handle 32-bit floating-point
numbers. In 1957, Zuse KG constructed the Z22 that contained an 8192-word magnetic
drum and was the first stored program computer. In 1961, Zuse KG built the Z23, which
was based on the same logic as and three times faster than the Z22, and was the first
transistor-based computer. In 1965, his company produced the Z43, which was the first
modern transistor computer to use TTL logic. The TTL (transistor-transistor-logic) type
digital integrated circuit (IC) uses transistor switches for logical operations. In 1956,
Siemens AG purchased Zuse KG.xv

In 1937, Howard Aiken (1900 - 1973) proposed a machine that could perform four
fundamental operations of arithmetic, addition, subtraction, multiplication and division,
in a predetermined order to Harvard University, which was forwarded to IBM. His
research had led to a system of differential equations that could only be solved using a
prohibitive amount of calculations using numerical techniques and which had no exact
solutions. His report stated:

“... whereas accounting machines handle only positive

numbers, scientific machines must be able to handle negative

ones as well; that scientific machines must be able to handle

such functions as logarithms, sines, cosines and a whole lot of

other functions; the computer would be most useful for

scientists if, once it was set in motion, it would work through

the problem frequently for numerous numerical values without

intervention until the calculation was finished; and that the

machine should compute lines instead of columns, which is

more in keeping with the sequence of mathematical events.”

Synergy User Manual and Tutorial

23

Aiken, working with IBM engineers, developed the ASCC computer (Automatic
Sequence Controlled Calculator), which was capable of five operations, addition,
subtraction, multiplication, division and reference to previous results. Though it ran on
electricity and the major components were magnetically operated switches, this machine
had a lot in common with Babbage's analytical engine. Construction of the machine
started in 1939 at the IBM laboratories, Endicott and was completed in 1943. The
machine weighed 35 tons, had more than 500 miles of wire, and used vacuum tubes and
relays to operate. The machine had 72 storage registers and could perform operations to
23 significant figures. The machine instructions were entered on punched paper tapes,
and punched cards were used to enter input data. The output was either in the form of
punched cards or printed by means of an electric typewriter. The machine was moved to
Harvard University, where it was renamed the Harvard Mark I, pictured above. The US
navy used this machine in the Bureau of Ordnance’s Computation Project for gunnery
and ballistics calculations, which was performed at Harvard. In 1947, Aiken completed

the Harvard Mark II, which was a completely electronic
computer. He also worked on the Mark III (the first
computer to contain a drum memory) and Mark IV
computers, and made contributions in electronics and
switching theory.xvi

In 1937, Claude Shannon (1916 - 2001) wrote his Master's
thesis, “A Symbolic Analysis of Relay and Switching
Circuits”, using symbolic logic and Boole's algebra to
analyze and optimize relay-switching and computer circuits.
It was published in A.I.E.E. Transactions in 1938. For this
work, Shannon was awarded the Alfred Nobel Prize of the
combined engineering societies of the United States in
1940. In 1948, Shannon published his most important work
on information theory and communication, “A

Synergy User Manual and Tutorial

24

Mathematical Theory of Communication”, where he demonstrated that all information
sources have a “source rate” and all communication channels have a “capacity”, both
measurable in bits-per-second, and that the information can be transmitted over the
channel if and only if the capacity of the channel is not exceeded by the source rate. He
also published works related to cryptography and the reliability of relay circuits, both
with respect to transmission in noisy channels.xvii

George Stibitz, a Bell Labs researcher, created the first electromechanical circuit that
could control binary addition from old relays, batteries, flashlight bulbs, wires and tin
strips in 1937. He realized that Boolean logic could be used for electromechanical
telephone relays. He incorporated this binary adder (picture on left with Stibitz)
prototype in his Model K digital calculator. Over the next two years, Stibitz and his
associates at Bell Labs devised a machine to perform all four basic math operations on
complex numbers. It was initially called the Complex Number Calculator but was
renamed the Bell Labs Model Relay Computer (also known as the Bell Labs Model 1) in
1949. This machine is considered to be the world's first electronic digital computer. Its
electromechanical brain consisted of 450 telephone relays and 10 crossbar switches, and
three teletypewriters provided input to the machine. It could find the quotient of two
eight-place complex numbers in about 30 seconds. Stibitz brought one of the typewriters

to an American
Mathematical
Association
meeting in 1940
at Dartmouth
and performed
the world's first
demonstration
of remote
computing by
using phone
lines to
communicate
with the
Complex
Number
Calculator,
which was in
New York.xviii

Synergy User Manual and Tutorial

25

In 1937, Alan Turing (1912 - 1954) published his
paper “On Computable Numbers, with an
application to the Entscheidungsproblem (decision
problem)”. In this paper, he introduced the Turing
Machine, which was an abstract machine capable of
reading or writing symbols and moving between
states, dependent upon the symbol read from a bi-
directional, movable tape, using a set of finite rules
listed in a finite table. This machine demonstrated
that every method found for describing ‘well-
defined procedures’, introduced by other
mathematicians, could be reproduced on a Turing
machine. This statement is known as the Church-
Turing thesis and is a founding work of modern
computer science, which defined computation and
its absolute limitation. His definition of computable
was that a problem is ‘Calculable by finite means’.

In 1938, his Ph.D. thesis, which was published as “Systems of Logic based on Ordinals”
in 1939, Turing addressed uncomputable problems.

During World War II, Turing worked at Bletchley Park,
the British government's wartime communications
headquarters. His main task was to master the Enigma
(pictured right), the German enciphering machine,
which he was able to crack, providing the Allies with
valuable intelligence. His contributions made him a
chief scientific figure in the fields of computation and
cryptography. After the war, he was interested in the
comparison of the power of computation and the power
of the human brain. He proposed the possibility that a
computer, if properly programmed, could rival the
human mind. In 1950, Turing wrote his famous paper
"Computing Machinery and Intelligence," which, along
with his previous work, founded the study of ‘Artificial
Intelligence’. This paper introduces ‘the imitation
game’, which is a test to determine if a computer
program has intelligence. This game is now referred to
as the Turing Test. Turing describes the original
imitation game as:

Synergy User Manual and Tutorial

26

“The new form of the problem can be described in terms of a game which we call the

‘imitation game.’ It is played with three people, a man (A), a woman (B), and an

interrogator (C) who may be of either sex. The interrogator stays in a room apart from

the other two. The object of the game for the interrogator is to determine which of the

other two is the man and which is the woman. He knows them by labels X and Y, and at

the end of the game he says either "X is A and Y is B" or "X is B and Y is A." The

interrogator is allowed to put questions to A and B.”

The idea in the Turing Test is that the interrogator (C) is actually communicating with
human (A), a machine (B). The interrogator asks the two candidates questions to decide
their identities, as above with the man and woman. In order to prove that it’s program is
intelligent, the machine must fool the interrogator into choosing it as the human.xix

Between 1937 and
1938, John
Vincent Atanasoff
(far left) and
Clifford Berry
devised the
principals for the
ABC machine
(right), an
electronic-digital
machine that
would lead to
advances in digital computing machines. This non-
programmable binary machine’s construction began in 1941
but was stopped in 1942 due to World War II before
becoming operational. This machine employed capacitors to
store electrical charge that could correspond to numbers in
the form of logical 0’s and 1’s. This was the first machine to
demonstrate electronic techniques in calculation and to use
regenerative memory. It contained 300 vacuum tubes in its

arithmetic unit and 300 more in its control unit. The capacitors were affixed inside of 12-
inch tall by 8-inch diameter rotating Bakelite (a thermosetting plastic) cylinders (shown
below) with metal contact bands on their outer surface. Each cylinder contained 1500
capacitors and could store 30 binary numbers, 50 bits in length, which could be read from
or written to the metal bands of the rotating cylinder. The input data was loaded on
punched cards. Intermediate data was also stored on punched cards by burning small
spots onto the cards with electric sparks, which could be re-read by the computer at some

Synergy User Manual and Tutorial

27

later time by detecting the difference in electrical resistance of the carbonized burned
spots. This machine could also convert from binary to decimal and vice versa.xx

In 1943, the U.S. Army contracted with the Moore School of Electrical Engineering,
University of Pennsylvania, for the production of the Electrical Numerical Integrator and
Computer (ENIAC), which would be used to calculate ballistic tables, which was
designed by J. Presper Eckert (1919-1995) and John Mauchly (1907-1980). The 30-ton
machine with approximately 18,000 vacuum tubes was completed in 1946 and was
contained in a 30’ by 50’ room.

The ENIAC was a general-purpose digital electronic computer that could call
subroutines. It could reliably perform 5,000 additions or 360 multiplications per second,
which was between 100 and 1000 times faster than existing technology. At the time of
its introduction, ENIAC was the world’s largest single electronic apparatus. This
machine was separated into thirty autonomous units. Twenty of these were accumulators,
which were ten-digit, high-speed adding machines with the ability to store results. These
accumulators used electronic circuits called ring counters, a loop of bistable devices (flip-
flops) interconnected in such a manner that only one of the devices may be in a specified

Synergy User Manual and Tutorial

28

state at one time, to count each of
its digits from 0 to 9 (a decimal
arithmetic unit). The machine
also had a multiplier and divider-
square rooter, which special
devices to accelerate their
respective arithmetic operations.

A “computer program” on
ENIAC was entered by using
wires to connect different units
of the machine as to perform
operations is a required
sequence. The picture on the left
shows two women entering a
program, which was a very

difficult task. The machine was controlled by a sequence of electronic pulses, in which
each unit on the machine could issue a pulse to cause one or more other units to perform
a computation. The control and data signals on ENIAC were identical, typically were 2
microsecond pulses placed at ten microsecond intervals, which could allow for the output

Synergy User Manual and Tutorial

29

of an accumulator to be attached to the input of a control line of another accumulator.
This could allow data-sensitive operations or operations based on data content. It also
had a unit called the “Master Programmer”, which performed nested loops or iterations.
ENIAC’s units could operate simultaneously, performing parallel calculations.
Eventually this machine could perform IF-THEN conditional branches. It is likely that
this was the first machine with this operation.xxi

In 1944, because of suggested improvements from people involved with the project, the
U.S. Army extended the ENIAC project to include research on Electronic Discrete
Variable Automatic Computer (EDVAC), a stored program computer. At about this
time, John von Neumann (1903 - 1957) visited the Moore School to take part in
discussions regarding EDVAC’s design. He is best known for producing the best-
recognized formal description of a modern computer, based on a stored program
computer, known as the von Neumann architecture, in his 1946 paper "First Draft of a
report to the EDVAC". The basic elements of this architecture are:

Synergy User Manual and Tutorial

30

• A memory, which contains both data and instructions and also allows both data
and instruction locations to be read from, and written to, in any order.

• A calculating unit, which can perform both arithmetic and logical operations on
the data.

• A control unit, which can interpret retrieved memory instructions and select
alternative courses of action based on the results of previous operations.

The EDVAC was a multipurpose binary computing machine with a memory capacity of
1,000 words, which was more than any other computing device of its time. Its memory
worked by using mercury delay lines, tubes of mercury in which electrical impulses were
bounced back and forth, creating a two-state device for storing 0’s and 1’s, which could
be assigned or retrieved at will. It used 12 of 16 possible 4-bit instructions and each word

in memory had 44 bits. The integer range was ±1-243 and the floating-point numbers had

a 33-bit mantissa, 10 bit exponent and 1 bit for the sign, with a range ± (1-2-33)2511. It
had approximately 10,000 crystal diodes and 4,000 vacuum tubes. Its average error-free
up-time was about 8 hours. Its magnetic drum could hold 4,608 words 48 bits in length
and a block transfer length of between 1 and 384 words. It also had a magnetic tape
storage system that could store 112 characters per inch on a magnetic wire that was
between 1,250 and 2500 feet long with a variable block length of between 2 and 1024
words also 48 bits long. During searches of the tape the machine could be released for
computation and data read from the tape could be automatically re-recorded to the same
place on the tape. EDVAC’s input devices consisted of a photoelectric tape reader could
read 78 words per second and an IBM card reader that could read 146 cards per minute at
8 words per card. The output devices were a 30 word per minute paper tape perforator, a
30 word per minute teletypewriter and a 1000 word per minute cardpunch. This machine
had a clock speed of 1 MHz and was a significant improvement over ENIAC.xxii

Thomas Flowers and
crew started
construction on the
Mark 1 COLOSSUS
computer in 1943 at
Dollis Hill Post Office
Research Station in the
U.K. Max Newman
and associates of
Bletchley Park (‘Station
X’), Buckinghamshire,
designed this machine,
which was primarily
intended for

Synergy User Manual and Tutorial

31

cryptanalysis of German Fish teleprinter ciphers used during World War II. This
electromechanical attempt at a one-time pad was the German military’s most secure
method of communication. Prior to knowledge of Zuse’s Z3, this was considered to be
the first totally electronic computing device, using only vacuum tubes as opposed to
relays in the Z3. This special purpose computer was equipped with very fast optical
punch card readers for input. Nine of the improved Mark II machines were constructed
and the original COLOSSUS Mark I was converted, for a total of ten machines. These
machines were considered to be of the highest level of secrecy. After the end of the war,
by direct orders from Churchill, all ten machines were destroyed—reduced into pieces no
larger than a man’s hand. The COLOSSUS, Heath Robinson (precursor to the
COLOSSUS) and the Bombe (a machine designed by Alan Turing) are all in the process
of reconstruction to preserve these important achievements.

The Universal Automatic Computer I (UNIVAC I) was designed by J. Presper Eckert and
John Mauchly in 1947. The machine, constructed by Eckert-Mauchly Computer
Corporation, founded by Eckert and Mauchly in 1946 but later purchased by Sperry-
Rand, was delivered to the US Census Bureau in 1951 at a cost of $159,000. By 1953,
three UNIVACs were in operation and by 1958 there were forty-six in the service of
government departments and private organizations. Rand sold the later machines for
more than $1,000,000 each.

Synergy User Manual and Tutorial

32

UNIVAC’s input consisted of 12,800 character per second magnetic tape reader, a 240
card per minute card to tape converter and a punched paper tape to magnetic tape
converter. Its output consisted of a12,800 character per second magnetic tape reader, a
120 card per minute card to tape converter, a 10 character per second character printer, a
Uniprinter (a 600 line per minute high-speed line printer developed by Earl Masterson in
1954) and a 60 word per minute Rad Lab buffer. This was the first machine to use a
buffered memory. It had 5,200 vacuum tubes, 18,000 crystal diodes, 300 relays and
contained a mercury delay line memory that could hold 1,000 words 72 bits in length (11
decimal digits plus sign). The 8 ton, 25 by 50 feet machine consumed 125,000 Watts of
power—31,250 times as much as a desktop computer (the average desktop consumes less
than 400 Watts). It could perform 1,900 additions, 465 multiplications or 256 divisions
per second. The machine also had a character set, similar to a typewriter keyboard, with
capital letters. In 1956 a commercial UNIVAC computer was introduced that used
transistors.

In 1943, the Massachusetts Institute of Technology (MIT) started the Whirlwind Project,
under the supervision of Jay Forrester, for the U.S. Navy after determining that it was
possible to produce a computer to run a flight simulator for training bomber crews.
Initially, they attempted to use an analog machine but found that it was neither flexible
nor accurate. Another problem was the typical batch-mode computers of the day were

Synergy User Manual and Tutorial

33

not computationally sufficient for
time constrained processing because
they could not continually operate on
continually changing input.
Whirlwind also required much more
speed than typical computational
systems. The design of this high-
speed stored-program computer was
completed by 1947 and 175 people
started construction in 1948. The
system was completed in three years,
when the U.S. Air Force picked it up
because the Navy had lost interest,

renaming it Project Claude. This machine was too slow and improvements were
implemented to increase performance. The initial machine used Williams tubes, cathode
ray tubes that were used to store electronic data, which were unreliable and slow.
Forrester expanded on the work of An Wang, who created the pulse transfer-controlling
device in 1949. The product was magnetic core memory (upper left), which permanently
stores binary data on tiny donut shaped magnets strung together by a wire grid. This
approximately doubled the memory speed of the new machine, completed in 1953.
Whirlwind was the world’s first real-time computer and the first computer to use the
cathode ray tube, which at this time was a large oscilloscope screen, as a video monitor
for an output device.

The new machine was used in the
Semi Automated Ground
Environment (SAGE), which was
manufactured by IBM and became
operational in 1958. The picture on
the right shows a SAGE terminal.
This system coordinated a complex
system of radar, telephone lines,
radio links, aircraft and ships. It
could identify and detect aircraft
when they entered U.S. airspace.
SAGE was contained in a 40,000
square foot area for each two-system
installation, had 30,000 vacuum

tubes, had a 4k by 32-bit word magnetic drum memory and used 3 megawatts of power.
In 1958, the Whirlwind project was also extended to include an air traffic control system.
The last Whirlwind-based SAGE computer was in service until 1983.xxiii

Synergy User Manual and Tutorial

34

In 1946, work started on the Electronic Delay Storage Automatic Calculator (EDSAC), a
serial electronic calculating machine, at Cambridge. It was contained in a 5 by 4 meter
room, had 3000 valves, consumed 12,000 Watts and could perform 650 instructions per
second at 500kHz. Its mercury ultrasonic delay line memory could 1024 words 17 bits in
length (35-bit “long” digits could be contained by using two adjacent memory “tanks”)
and had an “Operating System” (called “initial orders”) that was stored in 31 words in
read-only memory”. The input device consisted of a 6⅔ character per second 5-track
teleprinter paper tape reader and output was performed on a 6⅔ character per second
teleprinter. A commercial version of EDSAC, called LEO, which was manufactured by
the Lyons Company, began service in 1953. Cambridge was the first university in the
world to offer a Diploma in Computer Science, using EDASC, which was initially a one-
year post graduate course called Numerical Analysis and Automatic Computing.xxiv

Synergy User Manual and Tutorial

35

In 1948, at the University of Manchester in England, the Small Scale Experimental
Machine, nicknamed the “Baby”, successfully executed its first program, becoming
world's first stored-program electronic digital computer. Frederic C. Williams (1911 -
1977) and Tom Kilburn (1921 - 2001) built the machine to test the Williams-Kilburn
Tube (type of memory composed of cathode vacuum tubes storing one bit of information
on a cathode ray tube, illuminating a point on the screen that stays on) for speed and
reliability, and to demonstrate the feasibility of a stored program computer. Its success
prompted the development of the Manchester Mark I, a useable computer based on the
same principals. The picture shows the “Baby” (replica), the shortest cabinet at the right,
and the Mark I, the six taller cabinets.

Synergy User Manual and Tutorial

36

The picture on
the left shows
Williams and
Kilburn at the
console of the
Manchester
Mark I. It was
built in 1949
and could
store data in
addressable
"line"s,
holding one
40-bit number
or two 20-bit
instruction
registers, and
had two 20-bit

address modifier registers, called "B-lines" (for modifying addresses in instructions),
which functioned either as index registers or as base address registers. This Mark I was
of historical significance because it is the first machine to include this index/base register
in its architecture, which was a very important improvement. It was the first Random
Access Memory computer. It could perform serial 40-bit arithmetic, with hardware add,

subtract and multiply (with an 80-bit
double-length accumulator) and logical
instructions. The average instruction
time was 1.8 milliseconds (about 550
additions per second), with
multiplication taking much longer. It
had a single-address format order code
with about 30 function codes. The
machine used two Williams tubes for
its 128 words of memory. Each tube
contained 64 rows with 40 points (bits)
per row, which was two “page”s (A
page was an array of 32 by 40 points).
It also had a 128 page capacity drum-
backing store, 2 pages per track, about
30 milliseconds revolution time on 2
drums (each drum could hold up to 32

Synergy User Manual and Tutorial

37

tracks, i.e. 64 pages).

The machine’s peripheral instructions included a “read” from a 5-hole paper tape reader,
on which the code was normally entered, and “transfer” a page or track to or from a
Williams-Kilburn Tube page or pair of pages in storage. It also had a bank of 40 (8 by 5)
buttons that could be used to set the ones in a word in storage. There were also additional
switches that controlled the operations of the Mark I. The current storage contents could
be viewed on the machine’s display tube, shown on the left, which was organized into 8
columns of 5-bit groups. There was a direct correspondence between the symbols, each
made up of a 5-bit group, on the punched cards and the symbols on the display tube. The
government awarded the contract to mass-produce Mark I computers to Ferranti Ltd.,
which was the world’s first commercially available computer. Kilburn wrote the first
electronically stored computer program for the Mark I and also established the world’s
first university computer science department at Manchester.xxv

There were substantial improvements in computer programming and user interface design
as well as hardware architecture. John Mauchly (ENIAC and UNIVAC) developed Short
Order Code, which is thought to be the first high-level language in 1949, for the Binary
Automatic Computer (BINAC) computer. The BINAC, completed in 1949, was designed
for Northrop Aviation and was the first computer to use a magnetic tape. In 1951, David
Wheeler, Maurice Wilkes, and Stanley Gill introduced sub-programs and the “Wheeler
jump”, to implement them by moving to a different section of instructions and returning
to the original section after the sub-program is finished. Maurice Wilkes also originated
the concept of micro-programming, which is a technique for providing an orderly
approach to designing the control section of a computer system.

In 1951, while working with the UNIVAC I
mainframe, Betty Holberton (left) created the sort-
merge generator, which was predecessor to the
compiler and may have been the first useful
program that had the capability of generating other
programs for the UNIVAC I, and developed the C-
10 instruction code, which controlled the its core
functions. The C-10 instruction code allowed
UNIVAC to be controlled by a control console
(keyboard) commands instead of switches, dials and
wires, which made the system much more useful
and human friendly. The code was designed to use
mnemonic characters to input instructions, such as
‘a’ for add. She later was the chairperson for the

Synergy User Manual and Tutorial

38

committee that established the standards for the Common Business Oriented Language
(COBOL).xxvi

In 1952, Grace Murray Hopper developed A-0, which is believed
to be the first real compiler or an intermediary program that
converts symbolic mathematical code into a sequence of
instructions that can be executed by a computer. This allowed
the use of specific call numbers assigned to the collected
programming routines that were stored on magnetic tape, which
the computer could find and execute. In the same year she
developed a compiler for business use, B-0 (later renamed
FLOW-MATIC) that could translate English terms and wrote a
paper that described the use of symbolic English notation to
program computers, which is much easier to use than machine
code that was previously used. While working on the UNIVAC

I, she encouraged programmers to reuse common pieces
of code that were known to work well, reducing
programming errors. She was on the CODASYL Short
Range Committee to define the basic COBOL language
design, which appeared in 1959 and were greatly
influenced by FLOW-MATIC. COBOL was launched in
1960 and was the first standardized computer
programming language for business applications.
Various computer manufacturers and the Department of
Defense supported development of the standard. It was
intended to solve business problems, be machine
independent and to be updated. COBOL has been

updated and improved over the years, and is still used today. Hopper spent many years
contributing to the standardization of compilers, which eventually led to international and
national standards and validation facilities for many programming languages.xxvii

In 1956, John Backus and his IBM team created the first
FORTRAN (short for FORmula TRANslation). The initial
compiler consisted of 25,000 lines of machine code, which
could be stored on magnetic tape. Backus and team wrote
the paper “Preliminary Report, Specifications for the IBM
Mathematical FORmula TRANslating System, FORTRAN”
to communicate their discovery and to show that scientists
and mathematicians could program without actually
understanding how the machines worked or without
knowing assembly language. It works by using a software

Synergy User Manual and Tutorial

39

device called a translator, which contains a parser to translate the high-level language that
could be read by people to a binary language that can be executed on a computer. A later
version of FORTRAN is still in use today, over 40 years later. Backus also developed a
standard notation, Backus-Naur Form (BNF), to unambiguously and formally describe a
computer language. BNF uses grammatical-type rules to describe a language.

In 1947, a major event occurred in
electronics and computation. John
Bardeen, Walter Brattain and William
Shockley (pictured in order on left)
announced that they developed the
transistor for which they were
awarded the Nobel Prize in 1956.
This invention ushered in a new era in
computers. First generation

computers used vacuum tubes as their principal digital circuits. Vacuum tubes generated
heat, consumed electrical power and quickly burned out, requiring frequent maintenance.
They were also used in telecommunications to amplify long distance phone calls, which
is the reason for this team’s research. Transistors can switch and modulate electronic
current, and are composed of a semi-conductor that can both conduct and insulate, such
as germanium or silicon. The transistor can act as a transmitter by converting sound
waves into electronic waves and a resistor by controlling electrical current. In 1954,
Texas Instruments lowered the cost of production by introducing silicon transistors. The
transistor brought about the second generation in computers by replacing vacuum tubes
with solid-state components, which began the semiconductor revolution. xxviii Philco
Corporation engineers developed the surface barrier transistor in 1954, which was the
first transistor suitable for use in high-speed computers. In 1957, Philco completed the

TRANSAC S-2000—the first large-scale, fully transistorized
scientific computer to be offered as a manufactured
product.xxix

In 1957, the Burroughs Atlas computer, constructed at the
Great Valley Research Laboratory outside of Philadelphia,
was one of the first to use transistors. The machine was
developed for the America air defense system deployed
during the 1950’s and was the ground guidance computer for
the Atlas intercontinental ballistic missile (ICBM). The first
launch was in 1958. The system had two memory areas, one
for data with 256 24-bit words and one for instructions with
2048 18-bit words. There were 18 Atlas computers
constructed, costing $37 million.xxx

Synergy User Manual and Tutorial

40

After the launch of Sputnik (NASA recreated model pictured on left) by the U.S.S.R. in
1957, The U.S. government responded by forming the Advanced Research Projects
Agency (ARPA) to ensure technological superiority by expanding new frontiers of
technology beyond immediate requirements. Initially ARPA's mission concerned issues,
including space, ballistic missile defense, and nuclear test detection. The major
contribution that ARPA made to computer technology was the Advanced Research
Projects Agency Network (ARPANET).

In 1960, Paul Baran of the RAND Corporation
published studies on secure communication
technologies that would allow military
communications to continue operations after a nuclear
attack. He discovered two important ideas that outline
the packet-switching principal for data
communications:

1. Use a decentralized network having multiple
paths between any two points, which allows
single points of failure from which the system
could automatically recover

2. Divide complete user messages into blocks
before sending them into the network

In 1961, Leonard Kleinrock performed research
on “store and forward” messaging, where
messages are buffered completely on a switch or
router, checksummed to find if an error exists in
the message, and sent to the next location. In
1962, J.C.R. Licklider from MIT discussed the
“Gallactic Network” concept in a series of
memos. These computer network ideas
represent the same type of general
communication system as is used in the Internet.
The same year that he wrote these memos,
Licklider was working at ARPA and was able to
convince others that this was an important idea.
In 1966, Lawrence G. Roberts from MIT was
brought in to head the APRANET project to
build the network. Roberts’ "plan for the
ARPANET" was introduced at a symposium in

Synergy User Manual and Tutorial

41

1967, which included a time-sharing scheme using smaller computers to facilitate
communication between larger machines as suggested by Wesley Clark. An updated
plan was completed in 1968, which included packet switching. The contract to construct
the network was awarded to Bolt, Beranek and Newman in early 1969. The first
connected network consisted of four nodes between UCLA, the Stanford Research
Institute, UCSB, and University of Utah. It was completed in December 1969. The
ARPANET was the world’s first operational packet switched network. Packet switching
was a new concept that allowed more than one machine to access one channel to
communicate with other machines. Previously these channels were switched and only
allowed one machine to communicate with one other machine at a time. By 1973, the
University College of London in England and the Royal Radar Establishment in Norway
connect to the ARPANET, making it an international network.

With the advent of computer internetworking came new innovations to facilitate
communication between machines. One innovation formulated by Robert Kahn and Vint
Cerf was to make host computers responsible for reliability, instead of the network as
was done in the initial ARPANET. This minimized the role of the network, which made
it possible to connect networks and machines with different characteristics and, made the
development of the Transmission Control Protocol (TCP)—to check, track and correct
transmission errors and the Internet Protocol (IP)—to manage packet switching. The
TCP/IP suite is arranged as a layered set of protocols, called the TCP/IP Stack, which
defines each layers responsibilities in the connectionless transmission of data and
interfaces that allow the passing of data between each layer. Because the interfaces
between each layer are standardized and well defined, development of hardware and
software is possible for different purposes, and from different architectures. The TCP/IP
protocols replaced the Network Control Protocol (NCP), the original ARPANET
protocol, and the military part of ARPANET was separated, forming MILNET, in 1983.
The initial network restricted commercial activities because it was government funded.

In the early 1970’s, message exchanges that were initially available on mainframe
systems became available across wide area networks. In 1972, Ray Tomlinson
introduced the “name@computer” addressing scheme to simplify e-mail messaging,
which is still in use today. In 1972, the Telnet standard for terminal emulation over
TCP/IP networks, which allows users to log onto a remote computer, was introduced. It
enables users to enter commands on offsite computers, executing the as if they were
using the remote systems own console. In 1973, the File Transfer Protocol (FTP) was
developed to facilitate the long-distance transfer of files across computer networks. The
Unix User Network (Usenet) was created in 1979 to facilitate the posting and sharing of
messages, called “articles”, to network distributed bulletin boards, called “newsgroups”.
In the mid 1980’s the Domain Name System used Domain Name Servers to simplify
machine identification. Instead of using a machines IP address, such as “10.192.20.128”,

Synergy User Manual and Tutorial

42

a user only need remember the machines domain name, such as “thismachine.net”. By
1982, commercial e-mail service was available in 25 cities and the term “Internet” was
designated to mean a “connected set of computer networks”. In 1983, the complete
change to TCP/IP created a truly global “Internet”.

National Science Foundation (NSF) became involved in ARPANET in the mid 1980’s.
In 1986, the NSFNet Backbone was started to connect and provide access to
supercomputers. In the late 1980’s, the Department of Defense stopped funding for
ARPANET and the NSF assumed responsibility for long-haul connectivity in 1989. The
first Internet Service Providers (ISP) companies also appeared, servicing regional
research networks and providing access to email Usenet News for the public. The NSF
initiated the connection of regional TCP/IP networks and the Internet began to emerge.
In the 1990’s, commercial activity was allowed and the Internet grew rapidly.
Eventually, this commercial activity created competition and commercial regional
providers, called Network Access Points (NAP’s) took over backbones and
interconnections, causing NSFNet to be dropped and the removal of all existing
commercial restrictions.

In 1989, Tim Berners-Lee invented the Uniform
Resource Locator (URL) and Hypertext Markup
Language (HTML), which were inspired by Vannevar
Bush's "memex". The URL provides a simple way to
find specific documents on the Internet by using the
name of the machine, the name of the document file
and the protocol to obtain and display the file. HTML
is a method to set the format a document by
embedding codes, which can also be used to designate
hypertext—text that can be “clicked” on with a mouse
pointer to cause some action or to retrieve another
document. Eventually it was possible to place
graphics and sound in documents, which started the
World Wide Web (WWW), and many of the services
that are now available on the Internet. By 1997, 150
countries and 15 million host computers were

connected to the Internet, and 50 million people were using the World Wide Web. By
1990, approximately 9 million people will send over 2.3 billion e-mail messages.xxxi

In 1958, the ALGOrithmic Language (ALGOL) 58 high-level scientific programming
language was formalized. It was designed to be a universal language by an international
committee. It was the first attempt at software portability to provide a machine
independent implementation. ALGOL is considered to be an important language because

Synergy User Manual and Tutorial

43

it influenced the development of future languages. Almost all languages have been
developed with “ALGOL-like” lexical and syntactic structures that have hierarchal,
nested environment and control structures. ALGOL 60 had block structure for statements
and the ability to call subprograms by name or by value. It also had if-then-else control
statements for iteration and with recursive ability. ALGOL has a small number of basic
constructs with a non-restricted associated type and rules to combine them into more
complex constructs, of which some can produce values. ALGOL also had dynamic
arrays wit variable specified subscript ranges, reserved words for key functions that could
not be used as identifiers, and user defined data types to fit particular problems. A
sample ALGOL source code “Hello World!” program from the Web site referenced for
this information that runs on a Unisys A-series mainframe is:xxxii

BEGIN
FILE F (KIND=REMOTE);
EBCDIC ARRAY E [0:11];
REPLACE E BY "HELLO WORLD!";
WHILE TRUE DO
 BEGIN
 WRITE (F, *, E);
 END;
END.

As of 1959, more that 200 programming languages had been created.

Between 1958 and 1959, both
Texas Instruments and Fairchild
Semiconductor Corporation were
introducing integrated circuits
(IC). TI’s Jack Kirby, an
engineer with a background in
transistor-based hearing aids,
introduced first IC (pictured left
from CNN), which was based on
a germanium semiconductor.
Soon after, one of Fairchild’s
founders and research engineers,
Robert Noyce, produced a
similar device based on a silicon
semiconductor. The monolithic

integrated circuit combined transistors, capacitors, resistors and all connective wiring on
a single semiconductor crystal or chip. Fairchild produced the first commercially
available ICs in 1961. Integrated circuits quickly became the industry standard

Synergy User Manual and Tutorial

44

architecture for computers. Robert Noyce later founded Intel. Jack Kirby had
commented:

"What we didn't realize then was that the integrated circuit would reduce the cost of

electronic functions by a factor of a million to one, nothing had ever done that for

anything before"
xxxiii

 In 1960, The
Remington Rand
UNIVAC delivered
the Livermore
Advanced Research
Computer (LARC)
computer to the
University of
California Radiation
Laboratory, now
called the Lawrence
Livermore National
Laboratory. This
machine had four
major cabinets that
were approximately
20 feet long, 4 feet
wide and 7 feet tall.

One cabinet contained the I/O processor to route and control input and output, another
had the computational unit to perform computational activity, and the last two contained
16K of ferrite core memory. There were also twelve floating head drums, rotating
cylinders coated with a magnetic material, that were approximately 4 feet wide, 3 feet
deep and 5 feet high, which were used as storage devices. Each drum could store
250,000 12-decimal-digit LARC words—almost 3 Megs on its 12 drums. There were
also two independent controllers for read and write operations. There were also eight
tape head units that could hold approximately 450,000 LARC words on each tape reel,
deducting storage overhead. Its printer could print 600 lines per minute and had a 51
alphanumeric characters set. There was a punch card reader and a control console with
toggle switches to control the system (pictured above). The LARC performed decimal
mode arithmetic operations to 22 decimal digits and could perform 12x12 addition in 4
microseconds and 12x12 multiplication in 12 microseconds, with division taking a little
bit longer. The machine used storage, shift and result registers to store information
during repetitive calculations. LARC’s hardware was difficult to maintain due to its

Synergy User Manual and Tutorial

45

discrete nature, being comprised of a collection of transistors, resistors, capacitors and
other electronic components.xxxiv

In November of 1960, Digital
Equipment Corporation (DEC)
started production of the world’s
first commercial interactive
computer, the PDP-1 (left). The
$120,000 machine’s four cabinets
measured approximately 8 feet in
length. A DEC technical bulletin
describes it as:

"...a compact, solid state general

purpose computer with an internal

instruction execution rate of

100,000 to 200,000 operations per

second. PDP-1 is a single address,

single construction, stored program

machine with a word length of 18-

bits operating in parallel on 1's

complement binary numbers."

It had a 4000 18-bit word memory.
It was the first computer with a
typewriter keyboard and a cathode-
ray tube display monitor. It also
had a light pen, which made it

interactive, and a paper punch output device. Producing 50 of these machines made DEC
the world’s first mass computer maker.xxxv

Between 1961 and 1962, Fernando Corbató of MIT developed Compatible Time-Sharing
System (CTSS) as part of Project MAC, which was one of the first time-sharing
operating systems that allowed multiple users to share a single machine. It was also the
first system to have formatting text utility and one of the first to have e-mail capabilities.
Louis Pouzin developed RUNCOM for CTSS, the precursor of UNIX shell script, which
executed commands contained in a file and allowed parameter substitution. Multiplexed
Information and Computing Service (Multics), the operating system that led to the
development of UNIX, was also developed by project MAC. This system was the
successor to CTSS and was used for multiple-access computing.xxxvi

Synergy User Manual and Tutorial

46

In 1962, the Telstar I communications satellite was
launched and relayed the first transatlantic television
signals. The black and white image of an American flag
was relayed from a large antenna in Andover, Maine to
the Radome in Pleumeur-Bodou, France. This was the
first satellite built for active communications. It
demonstrated that a worldwide communication system
was feasible. The satellite was launched by NASA from
Cape Canaveral, Florida, weighed 171 pounds and was
34 inches in diameter. On the same day, the Telstar I

beamed the first satellite long distance phone call. The satellite was in service until 1963.
As of 2002, there were 260 active satellites in Earth’s orbit.

Synergy User Manual and Tutorial

47

 In late 1962, the Atlas computer (left) entered service at the University of Manchester,
England. This was the first machine to have pipelined instruction execution, virtual
memory and paging, and separate fixed and floating-point arithmetic units. At the time it
was the world’s most powerful computer capable of about 200,000 FLOPS. It could
perform the following arithmetic operations (approximate times):

• Fixed-point addition in 1.59 microseconds

• Floating-point add in 1.61 microseconds

• Floating-point multiply in 4.97 microseconds

The machine could timeshare between different peripheral and computing operations,
was multiprogramming capable, had interleaved stores, had V-stores to store images of
memory, had a one-level virtual store, had autonomous transfer units and ROM stores. It
had an operating system called the “Supervisor” to manage the computers processing
time and scheduling operations and could compile high-level languages. The machine
had a 48-bit word size and a 24-bit address size. It could store 16K words in its main
ferrite core memory, interleaving odd and even address. It had an additional 96K of
storage in its four magnetic drum storage, which was integrated with the main memory
using virtual memory or paging. It also accessed its peripheral devices through V-store
addresses and extracode routines.xxxvii

In 1964, J. Kemeny and T. Kurtz, mathematics professors at Dartmouth College,
developed the Beginner's All Purpose Symbolic Instruction Code (BASIC) as a simple to
learn and interpret language that would serve to help students learn more complex and
powerful languages, such as FORTRAN or ALGOL.xxxviii In the same year, IBM
developed its Programming Language 1 (PL/1), formerly known as New Programming
Language (NPL), which was the first attempt to develop a language that could be used for
many application areas. Previously, programming languages were designed for a single
purpose, such as mathematics or physics. PL/1 can be used for business and scientific
purposes. PL/1 is a freeform language with no reserved keywords, has hardware
independent data types, is block oriented, contains control structures to conditionally
allow logical operations, supports arrays, structures and unions (and complex
combinations of the three structures), and provides storage classes.xxxix

 In 1962, Doug Englebart of the Stanford Research Institute published the paper:
“Augmenting Human Intellect: A Conceptual Framework”. His ideas proposed a device
that would allow a computer user to interact with an information display screen by using
a device to move a cursor on the screen—in other words, a mouse. The actual device,
shown on the left, was invented in 1964.xl In the same year, the number of computers in
the US grows to 18,000. In 1972, Xerox Palo Alto Research Center (PARC) Learning

Synergy User Manual and Tutorial

48

Research Group developed Smalltalk.
This forerunner of Mac OS and MS
Windows was the first system with
overlapping windows and opaque pop-
up menus. In 1973, Alan Kay invented
the “office computer”, a forerunner of
the PC and Mac. Its design was based
on Smalltalk, with icons, graphics and a
mouse. Kay stated at a 1971 meeting at
PARC:

"Don't worry about what anybody else is going to do… The best way to predict the future

is to invent it. Really smart people with reasonable funding can do just about anything

that doesn't violate too many of Newton's Laws!"
 xli

In 1973, R. Metcalfe and researchers at Xerox PARC developed the experimental Alto
PC that incorporates a mouse, graphical user interface and Ethernet. Within the same
year, PARC’s Charles Simonyi developed Bravo text editor, the first “What You See Is
What You Get—type” (WYSIWYG) application. Metcalfe, later in the year, wrote a
memo describing Ethernet as a modified “Alohanet”, titled “Ether Acquisition”. By
1975, Metcalfe developed the first Ethernet local area network (LAN). By 1979, Xerox,
Intel and DEC had announced support for Ethernet. The Alto PC was officially
introduced in 1981 with a mouse, built-in Ethernet and Smalltalk. The commercial
version, available the same year, was named the Xerox Star and was the forst
commercially available workstation with a WYSIWYG desktop-type Graphical User
interface (GUI).

 In 1964, Control Data Corp. introduced the CDC
6600 (left). It was designed by supercomputer guru
Seymour Cray, had 400,000 transistors and was
capable of 350,000 FLOPS. The 100 produced $7-
10 million machines had over 100 miles of electrical
wiring and a Freon refrigeration system to keep the
system’s electronics cool and were the world’s first
commercially successful supercomputer. The
machine was also the first to have an interactive
display the showed the graphical results of data, as it
was processed in real-time.

Synergy User Manual and Tutorial

49

 Between 1964 and 1965, DEC
introduced the PDP-8 (left)—the
world’s first minicomputer. It
contained transistor-based circuitry
modules and was mass-produced for
the commercial market—the first
computer sold as a retail product.
During its initial offering at $18,000,
it was the smallest and least
expensive available parallel general-
purpose computer. By 1973, the
PDP-8, described as the “Model T”
of the computer industry, was the
best selling computer in the world.

They had 12-bit words, usually with 4K words of memory, a robust instruction set and
could run at room temperature.xlii

In 1965, Maurice V. Wilkes proposes the use of cache memory—a smaller, faster, more
expensive type of memory that hold a copy of part of main memory. Access to entities in
cache memory is much faster than that in main memory, which leads to better system
performance. The same year, Intel founder Gordon Moore proposed that the number of
transistors on microchips would double every year. The prediction was valid and came to
be known as Moore’s Law. Consider that a chip in 1964 that was 2½ cm2 had ten
components and a chip in 1970 of the same size had about 1000.

In 1967, Donald Knuth produced some of the work that would become “The Art of
Computer Programming”. He introduced the idea that a computer program’s algorithms
and data structures should be treated as different entities than the program itself, which
has greatly improved computer programming. Volume 1 of The Art of Computer
Programming was published in 1968.

In 1967, Niklaus Wirth began to develop the Pascal structured programming language.
The Pascal Standard (ISO 7185) states that it was intended to:

• “make available a language suitable for teaching programming as a systematic
discipline based on fundamental concepts clearly and naturally reflected by the
language”

• “to define a language whose implementations could be both reliable and efficient
on then-available computers”xliii

Synergy User Manual and Tutorial

50

Pascal, based on ALGOL’s block structure, was released in 1970. An example “Hello
World!” Program in Pascal is:

Program Hello (Input, Output);
Begin
 Writeln ('Hello World!');
End.

In 1968, Burroughs introduced the first computers that used integrated circuits—the
B2500 and the B3500. The same year Control Data built the CDC7600 and NCR
introduced their Century series computer—both using only integrated circuits.

In 1968, the Federal Information Processing Standard created the “The Year 2000 Crisis”
by encouraging the “YYMMDD” six-digit date format for information interchange. In
1968, the practice of structured programming started with Edsger Dijkstra’s writings
about the harm of the goto statement. This lead to wide use of control structures, such as
the while loop, to control iterative routines in programs.xliv Between 1968 and 1969,
NATO Science Committee held two conferences on Software Engineering, which is
considered to be the start of this field. From the 1960’s to the 1980’s, there was a
“software crisis” because many software projects had undesirable endings. Software
Engineering arose from the need to produce better software, on schedule and within the
anticipated budget. Essentially, Software Engineering is a set of diverse practices and
technologies used in the creation and maintenance of software for diverse purposes.xlv

In 1969, Bell Labs withdrew support from Project MAC and the Multics system to begin
development of UNIX. Kenneth Thompson and Dennis Ritchie began designing UNIX
in the same year. The operating system was initially named Uniplexed Information and
Computing System (UNICS) as a hack on Multics but was later changed. In the
beginning, UNIX received no financial support from Bell Labs. Some support was
granted to add text processing to UNIX for use on the DEC PDP-11/20. The text
processor was named runoff, which Bell Labs used to record patent information, and later
evolved into troff, the world’s first publishing program with the capability of full
typesetting. In 1973, it was decided to rewrite UNIX in C, a high level language, to
make it easily modifiable and portable to other machines, which accelerated the
development of UNIX. AT&T licensed use of this system to commercial, education and
government organizations.

In 1973, Dennis Ritchie developed the C programming language. C is a high level
programming language mainly to be used with UNIX. A sample “Hello World!”
program in C is:

Synergy User Manual and Tutorial

51

#include <stdio.h>

int main(){
printf ("Hello World!\n");
return 0;
}

 Later in 1983, Bjarne Stoustrup (right) added object
orientation to C, creating C++, at AT&T Bell Labs. In
1995, Sun Microsystems released its object-oriented Java
programming language, which was both platform
independent and network compatible. Java is an extension
of C++ and C++ is an extension of C.

By 1975, there were versions of UNIX using pipes for inter process communication
(IPC). AT&T released a commercial version, UNIX System III, in 1982. Later, System
V was developed by combining features from other versions, including U.C. Berkley’s,
Berkeley Software Distribution (BSD), which contributed the Vi editor and curses.
Berkley continued to work on BSD the noncommercial version and added Transmission
Control Protocol (TCP) and the Internet Protocol (IP), known as the TCP/IP suite, for
network communication to the UNIX kernel. Eventually AT&T produced UNIX System
V by adding system administration, file locking for file level security, job control,
streams, the Remote File System and Transport Layer Interface (TLI) as a network
application programming interface (API). Between 1987 and 1989, AT&T merged
System V and XENIX, Microsoft’s x86 UNIX implementation, into UNIX System V
Release 4 (SVR4).

Novel bought the rights for UNIX from AT&T to in an attempt to challenge Microsoft’s
Windows NT, which caused their core markets to suffer. Novel sold the UNIX rights to
X/OPEN, an industry consortium that defined a version of the UNIX standard, who later
merged with OSF/1, another standard group, to form the Open Group. The Open Group
presently defines the UNIX operating system.xlvi

 In 1969, the RS-232
standard, commonly
referred to as a serial port,
for serial binary data

interchange between Data terminal equipment (DTE)
and Data communication equipment (DCE) was
established.xlvii

Synergy User Manual and Tutorial

52

In 1970, RCA developed metal-oxide semiconductor
(MOS) technology for fabricating integrated circuits,
which made them smaller in size, cheaper and faster to
produce. The first chips using large-scale integration
(LSI) were produced in the same year, containing up to
15,000 transistors per chip. In 1971, Intel introduced
the world’s first mass produced, single chip, universal
microprocessor, the Intel 4004 (left), which was

invented by Federico Faggin, Ted Hoff, Stan Mazor and their
engineering team. It was a dual inline package (DIP)
processor, which means that it had two rows of pins that were
inserted into the motherboard. The microprocessor can be
thought of as a “computer on a chip”. All of the thinking
parts of the computer, central processing unit (CPU),
memory, input and output (I/O) controls, were miniaturized

and condensed onto a single
chip. The 4004 chip, based
on the silicon-gated MOS
technology, had more than
2,300 transistors in an area
of 12 square millimeters, a
4-bit CPU that used 8-bit
instructions, a command
register, a decoder,
decoding control, control
monitoring of machine
commands and an interim
register. The chip ran at a
speed of 108 kHz and could
process 60,000 instructions

per second at a cost of $300. It had sixteen either 4-
bit or 8-bit general-purpose registers and set of 45
instructions. It could address 1K of program
memory and 4K of data memory. Later models had
clock speeds of up to 740KHz. The picture on the
lower left shows the 4004 motherboard and the
picture on the right shows the chip die. The Pioneer
10 spacecraft, launched on March 2, 1972, used a
4004 processor and became the first spacecraft (and
microprocessor) to enter the Asteroid Belt.xlviii

Synergy User Manual and Tutorial

53

In 1972, Intel offered the 8008 chip (left),
which was the world’s first 8-bit
microprocessor. The 8008 had 3300
transistors and even though its clock speed
was 800 KHz it was slightly slower in
instructions per second than the 4004 but
because it was 8-bit, it could access more
RAM and process data 3 to 4 times faster
than the 4-bit chips. In 1974, Intel released
the 8080 chip (left), which had a 16-bit
address bus and an 8-bit data bus. It had a
16-bit stack pointer, a 16-bit program

counter and seven 8-bit registers, of which some could be combined for 16-bit registers.
It also had 256 I/O ports to ensure that devices did not interfere with its memory address
space. It had a clock speed of 2 MHz, 64 KB of addressable memory, 48 instructions and
vectored multilevel interrupts.

In 1978, Intel introduced the 8086 chip
(left)—the first 16-bit microprocessor.
This chip had 29,000 transistors, using
a 3.0-micron die core design and 300
instructions. It had a 16-bit bus
compatibility for communication with

peripherals. The chips were available in 5, 6, 8, and 10 MHz clock speeds and had a 20-
bit memory address space that could address up to 1 MB of RAM. Though the 8086 was
available, IBM chose to use the 8088, the 8-bit version developed slightly later, because
of the former chip’s great expense.xlix

The Intel 80186, released in
1980, had a 16-bit external
bus, an initial clock speed of
6 MHz and a 1.0-micron die.
This chip was Intel’s first pin

grid array (PGA) offering,
meaning that the pins on the
processor were arranged into
a matrix-like array with the
pins around the outside edge
(upper right). This popular

chip was mostly used in imbedded systems and rarely used in PCs. This model required
less external chips than its predecessors. It had an integrated system controller, a priority

Synergy User Manual and Tutorial

54

interrupt controller, two direct memory access (DMA) channels (with
controller), and timing circuitry (three timers). It replaced 22 separate
VLSI and transistor-transistor logic (TTL) chips and was more cost
efficient than the chips it replaced. In 1982, Intel developed the 80286
processor, which had 134,000 transistors, a 1.5-micron die, and could
address up to 16 megabytes of memory. This microprocessor was the
first to introduce the protected mode, which allowed the computer to
multitask by running more than one program at a time by time-sharing
the systems resources. Its initial models ran at 8, 10 and 12.5 MHz but
later models ran as fast as 20 MHz. The 80386 processor was released in
1985 with 275,000 transistors, a 1.0-micron die, a 32-bit instruction and
a 32-bit memory address space that could address up to four gigabytes of

RAM. It had the ability to address up to 64 terabytes of virtual memory. The initial
clock speeds were 16, 20, 25, and 33 MHz. It also had a feature called instruction
pipelining, which allowed the processor to run the next instruction before finishing the
previous instruction. It had a virtual real time mode that allowed more than one running
session of real time programs, a feature that is used in multitasking operating systems.
This chip also had a system management mode (SMM), which could power down various
hardware devices to decrease power use. In 1989, Intel introduced the 80486 line of
processors with 1.2 million transistors, a 1.0-micron die, and the same instruction and
memory address size as the 386. This was the first microprocessor to have an integrated
floating-point unit (FPU). Previously, CPUs had to have an external FPU, called a math
coprocessor, to speed up floating-point operations. It also had 8 kilobytes of on-die
cache, which stored predicted next instructions for pipelining. This saved an access to
main memory, which is much slower than cache memory. Later 486 models could
operate at greater speeds that the maximum system bus speed. The 486DX2/66 was a
clock doubled 33 MHz to 66 MHz and the 486DX4/100 was clock a tripled 33 MHz to
100 MHz.

In 1993, Intel released the Pentium processor with 3.21 million
transistors and a 0.8-micron die. Clock speeds were available
from 60 to 200 MHz, with a 60 MHz processor capable of 100
MIPS. It had the same 32-bit address space as the 386 and 486
but had an external data bus width of 64 bits and a superscalar
architecture (able to process two instructions per clock cycle),
which allowed it to process instructions and data about twice as
fast as the 486. Internally, this chip was actually two 32-bit
processors chained together that shared the workload. It had

two separate 8 KB caches (one data and one instruction cache) and a pipelined FPU,
which could perform floating-point operations much faster than the 486. Later versions

Synergy User Manual and Tutorial

55

of the chip had symmetric dual processing—the ability to have two processors in the
same system.

In 1995, the Pentium Pro was released with 5.5 million
transistors, a 0.6-micron die and a clock speed of up to 200
MHz. It was a reduced instruction set computer (RISC)
processor. RISC processors have a smaller set of instructions
than complex instruction set computer processors. The first
computers were of CISC design to bridge semantic differences
or gaps between low-level machine code and high-level
programming languages, which reduced the size of computer
programs and calls to main memory but did not necessarily

improve system performance. The main idea with RISC is to build more complex
instructions using a sequence of smaller, simpler instructions. Complex instructions have
greater time and space overhead while decoding instructions, especially when microcode
is used to decode macroinstructions. There is a high probability that the frequency of
instructions to be processed will be smaller rather than larger. Limiting the number of
instructions in a computer to a smaller optimized set can contribute to greater
performance. The Pentium Pro could process three instructions per clock cycle and had
decoupled decoding and execution, which allowed the processor to keep working on
instructions in other pipelines if one of the pipelines stops to wait for an event. The
standard Pentium would stop all pipelines until the event occurred. It also had up to 1
MB of onboard level-2 cache, which was faster than having the cache on the
motherboard.

In 1997, Intel released the Pentium MMX series of processors
with 4.5 million transistors, clock speeds up to 233 MHz and a
0.35-micron die size. The MMX had 57 additional complex
instructions that aided the CPU in performing multimedia and
gaming instructions 10 to 20 percent faster than processors
without the MMX instruction set. The processor also had dual
16K level-1 cache and improved dynamic branch prediction, an
additional instruction pipe and a pipelined FPU.

In 1993, Intel released the Pentium II, which had 27.4
million transistors and a 0.25-micron die. The
Pentium II combined technology from both the
Pentium Pro and the Pentium MMX. It had the Pro’s
dynamic branch prediction, the MMX instructions,
dual 16K level-1 cache and 512K of level-2 cache.
The level-2 cache ran at ½-speed and was not

Synergy User Manual and Tutorial

56

attached directly to the processor, which yielded greater performance but not as much as
if it were full-speed and attached. The most notable change was the single edge contact
(SEC), called the “Slot 1”, package design, which resembled a card more than it did a
processor. Initial chips had a 66 MHz bus speed but later models had a 100 MHz bus.
The bus speed is the maximum speed that the processor uses to access data in main
memory.

In 1999, Intel released the Pentium III processor
with 28 million transistors, a 0.18 die and a 450
MHz clock speed. This processor had 70 additional
instructions that were extensions of the MMX set,
called the SSE instruction set (also known as the
MMX2 instruction set), which improved the
performance of 3D graphics applications. Later
versions of the Pentium III increased the bus speed
to 133 MHz and moved the level-2 cache off of the

board and onto the CPU core. Though Intel halved the memory to 256K, there was still a
benefit to performance.

In late 2000, Intel introduced the Pentium IV with 42
million transistors, 0.13-micron die and a new NetBurst
architecture to support future increases in speed. NetBurst
consists of the Hyper Pipelined Technology, the Rapid
Execution Engine, the Execution Trace Cache and a
400MHz system bus. The Hyper Pipelined Technology
doubled the width of the data pipe from 10 to 20 stages,
which decreased the amount of work per stage and allowed
it to handle more instructions. A negative consequence of
widening the data pipe is that it took longer to recover from

errors. A newer and advanced branch predictor aided the chip in hedging against this
propensity. The Rapid Execution Engine was the inclusion of two arithmetic logic units
operating at double the speed of the processor, which was necessary to handle the
doubled data pipe. The Execution Trace Cache was a new kind of cache that could hold
decoded instructions until they are ready for execution. The chip has less level-1 cache,
8K, to decrease latency.l

One of the ways Intel and other manufacturers have increased the speed and performance
of CPUs was to decrease die size. This decreases the voltage needed to run the processor
and increases clock speed. The functional part of a processor is actually a tiny chip with
less than a third of a square inch of area within the external package shown in the
preceding paragraphs. The chips are thinner than a dime and contain tens-of-millions of

Synergy User Manual and Tutorial

57

electronic circuits and switches. The chips are constructed from semiconductor
materials, such as gallium arsenide or most commonly silicon, which require certain
conditions to conduct electricity. In the case of silicon, it is grown into a large crystal
and sliced by precision saws into sheets, called wafers, which can hold many individual
chips. Layers of various materials treated with a photosensitive material are built up on
the surface of the wafer to form the foundation of the transistors and data pathways. A
process called photolithography is used to process these wafers by copying the circuitry
onto the layered materials on the wafer using a separate mask for each layer. Light is
accurately focused through the masks, transferring the masks image onto the wafer,

which causes a chemical reaction on the photosensitive material, fixing the circuitry.
Another chemical is used to wash away the excess material. Sometime after the
photolithography process is complete, the wafer is cut into small rectangular chips. The
chips are installed into the CPU package by soldering the appropriate contacts on the chip
with other circuitry and the pins that create the interface with the computer’s
motherboard.li

FIND MATERIAL ON ANALYTIC COMPLEXITY THEORY—1972

In 1975, Bill Gates and Paul Allen developed BASIC—the first microcomputer
programming language. In 1977, Microsoft, Gates and Allen’s newly founded company,
released Altair BASIC for use on the Altair 8800. In 1980, Microsoft acquired the
nonexclusive rights to an operating system, called 86-DOS, that was developed by a
Seattle Computer Products' Tim Patterson. Microsoft had paid $100,000 to contract the
rights from SCP to sell 86-DOS to an unnamed client. In 1980, IBM chose Microsoft
product PC-DOS as the operating system for their new personal computer line.

The IBM PC became a mainstream corporate item when it
was released in 1981. Microsoft bought all rights to 86-DOS
in 1981, renaming it as MS-DOS. IBM’s 5150 had a 4.77
MHz Intel 8088 CPU with 64K of RAM and 40K of ROM.
It had a 5.25-inch, single-sided floppy drive, PC-DOS 1.0
installed and sold for $3000. IBM’s new PC had an open
architecture, which used off-the-shelf components. This was
good for rapid and industry standard development but bad
(for IBM) because other companies could obtain these
components and build their own machines. In 1982,
Columbia Data Products released the first IBM PC

compatible “clone”, called the MPC and Microsoft released an IBM compatible version
operating system—MS-DOS v1.25, which could support 360K double-sided floppy

Synergy User Manual and Tutorial

58

disks. The same year, Compaq introduces
their first PC. The popularity of the PC
caused sales to soar to 3,275,000 units in
1982, which was greater than ten times as
many in 1981. The social impact of
computers was so important that Time
Magazine named the PC as its “Man of the
Year” to be published on the cover of the
January 1983 edition as the “Machine of the
Year”. By 1990, more that 54 million
computers will be in use in the U.S. By 1996,
approximately 66 percent of employees and
33 percent of homes have access to personal
computers.

The initial MS-DOS offerings did not support
hard disks. Version 2.0 in 1983 supported up
to 10 MB hard disks and tree – structured file
systems. Version 3.0 in 1984 supported 1.2
MB and hard disks larger than 10 MB and 3.1

had Microsoft network support. Version 4.0 in 1988 had graphical user interface support,
a shell menu interface and support for hard disks larger than 32 MB. Version 5.0 in 1991
had a full-screen editor, undelete and unformat utilities, and task swapping. Version 6.0
in 1993 had DoubleSpace disk compression utility and sold over a million copies in 40
days. Version 7.0 of MS-DOS was included with Windows 95 in 1995.lii

In 1985,
Microsoft
introduced
Windows
1.0(top left)
with the promise
of an easy-to-
use graphical
user interface,
device
independent
graphics and
multitasking
support. A

limited set of available applications lead to modest sales. Windows 2.0 (bottom left) was

Synergy User Manual and Tutorial

59

released in 1987 with two types available.
One was for the 16-bit Intel 80286
microprocessor, called Windows/286. It
added icons and overlapping windows with
independently running applications. The other
was for Intel’s 32-bit line of 80386
microprocessors, which had all the
functionality of the Windows/286 system but
also had the ability to run multiple DOS
applications, simultaneously. Windows 2.0
had much better sales due to the availability of

software applications, including Excel, Word,
Corel Draw!, Ami, Aldus PageMaker and
Micrografx Designer. In 1990, Microsoft
released Windows 3.0 (left) with a completely
new interface and the ability to address
memory beyond 640K without secondary
memory manager utilities. Many independent
software developers produced software
applications for this environment, boosting
sales to over 10,000,000 copies.

In 1994, Microsoft released Windows NT 3.1
with an entirely new operating system kernel.
This system was intended for high-end uses,
such as network servers, workstations and
software development machines. Windows
NT 4.0 was released later the same year and
was an object-oriented operating system. In
1995, Microsoft introduced Windows 95
(left), which was a full 32-bit operating
system. It had preemptive multitasking,
multithreaded, integrated network, advanced
file system. Though it included DOS 7.0, the
Windows 95 OS assumed full control of the
system after booting. In 1998, Windows 98

was released with enhanced Web support (the Internet Explorer browser was integrated
with the OS), FAT32 for very large hard disk support, and multiple display support to use
up to 8 video cards and monitors. It also had hardware support for DVD, Firewire,
universal serial bus (USB) and accelerated graphics port (AGP). In 2000, Windows 2000
(formerly NT 5.0) was released and included many of the features of Windows 98,

Synergy User Manual and Tutorial

60

including integrated Web support, and enhanced support for distributed file system. It
also supported Internet, intranet and extranet platforms, active directory, virtual private
networks, file and directory encryption, and installation of the W2K OS from a server
located on the LAN.

1976, Cray Research developed the Cray-1 (left)
supercomputer with vectorial architecture, which
was installed at the Los Alamos National
Laboratory. The $8.8 million machine could
perform 160 FLOPS (world record at the time)
and had an 8-megabyte (1 million words) main
memory. The machines hardware contained no
wires longer than four feet and had a “unique C-
shape”, which allowed integrated circuits to be
very close together. In 1982, Steve Chen’s and
his research group built the Cray X-MP (right) by
making architectural changes to the Cray-1,
which contained two Cray-1 compatible
pipelined processors and a shared memory
(essentially two Cray-1 machines were linked
together in parallel using a shared memory).
This was the first use of shared-memory
multiprocessing in vector supercomputing. The
initial computational speedup of the two-
processor X-MP over the Cray-1 was 300%—

three times the computational speed by only
doubling the number of processors. It was
capable of 500 megaflops. This machine
became world’s most commercially successful
parallel vector supercomputers. Chen
commented that the X in X-MP stood for
“extraordinary”. The X-MP ran on UNICOS,
which was Cray’s first UNIX-like operating
system. In 1985, the Cray-2 reached one
billion FLOPS and had the world’s largest
memory at 2048 megabytes. In 1988, Cray
produced the Y-MP, which was first
supercomputer to “sustain” over one billion
FLOPS on many of its applications. It had
multiple 333 million FLOPS processors that
could achieve 2.3 billion FLOPS.liii

Synergy User Manual and Tutorial

61

In 1977, DEC introduced the 32-bit
VAX11/780 computer (left), which was
used primarily for scientific and technical
applications. The first machine was
installed at Carnegie Mellon University
with other units installed at CERN in
Switzerland and the Max Planck Institute
in Germany. It could perform 1,000,000
instructions per second and was the first
commercially available 32-bit machine.liv

 In 1981, Motorola introduced one of the first
32-bit instruction microprocessor offerings from
their 68000 line of processors. The chip has 32-
bit registers and a flat 32-bit address space,
which could access a specific memory location,
instead of blocks of memory like the 8086. It
had a 16-bit ALU but had a 32-bit address adder
for address arithmetic. It had eight general-
purpose registers and eight address registers. It
used the last address register as a stack pointer
and had a separate status register. It was
initially designed as an embedded processor for
household products but found its way into
Amiga and Atari home computers and arcade

computer games as a controller. It was also used in Apple Macintosh, Sun Microsystems
and Silicon Graphics machines. The architecture of this chip was very similar to PDP-11
and VAX machines, which made it very compatible with programs written in the c
language. The chip has been used by auto manufacturers as controllers as well as in
medical hardware and computer printers because of its low cost. Updated models of the
processor are still used today in personal digital assistants (PDAs) and Texas Instruments
TI-89, TI-92 and Voyage 2000 calculators. In 1988, Motorola introduced the 88000
series processors, which were RISC-based, had a true Harvard architecture (separate
instruction and data busses) and could perform 17 MIPS.lv

In 1985, Inmos introduced the transistor computer (transputer) with its concurrent parallel
microprocessing architecture. Single transputer chips would have all the necessary
circuitry to work by themselves or could be wired together to form more powerful
devices from simple controllers to complex computers. Chips of varying power and
complexity were available to serve a wide array of tasks. A low power chip might be

Synergy User Manual and Tutorial

62

configured to be a hard disk controller and a few higher-powered chips might act as
CPUs. These were the first general purpose chips to be specifically designed for parallel
computing.

It was realized in the early 1980’s that conventional CPUs would reach a performance
limit. Even though advances in technology had miniaturized processor circuitry, packing
millions of transistors on chips smaller than the size of a fingernail and had drastically
increased computational speed, there was still a impenetrable barrier to conventional
processor performance—the speed of light. Light in a vacuum travels at approximately
299,792,458 meters per second or approximately one foot in a nanosecond. This is the
upper limit for the speed that electrons can travel within electrical equipment, which
suggests that the clock speed limit for processors is about 10 GHz. We are almost half
way to this limit and we realize that the speed of light is a limiting factor in the design of
CPUs. The best way to ensure progress in computational performance is parallel
processing.lvi

Synergy User Manual and Tutorial

63

Parallel Processing

What is parallel processing?

Parallel processing is the concurrent execution of the same activity or task on multiple
processors. The task is divided or specially prepared so that the work can be spread
among many processors and yield the same result as if done on one processor but in less
time. There is a variety of parallel processing systems. A parallel processing system can
be a single machine with many processors or many machines connected by a network.
The most powerful machines in the world are machines with hundreds or thousands of
processors and hundreds of gigabytes of memory. These machines are called massively
parallel processors (MPP). Many individual machines can cooperate to perform the same
task in distributed networks. The combination of lower performance computers may
exceed the power of a single high-performance computer, when the computational
resources are comparable. The computational power of MPPs has been combined using
the distributed system model to produce unprecedented performance.

Flynn’s taxonomy classifies computing systems with respect to the two types of streams
that flow into and out of a processor: instructions and data. These two types of streams
can be conceptually split into two different streams, even if delivered on the same wire.
The classifications, based on the number of streams of each type, are:

Single instruction stream/single data stream (SISD) systems have a single instruction
processing unit and a single data processing unit. These are conventional single
processor computers, also known as sequential computers scalar processors.

Single instruction stream/multiple data streams (SIMD) systems have a single instruction
processing unit or controller and multiple data processing units. The instruction unit
fetches and executes instructions until a data or arithmetic operation is reached. It then
sends this instruction to all of the data processing units, which each perform the same
task on different pieces of data, until all data is processed. These data processing units
are either idle or all performing the same task as all other data processors. They cannot
perform different tasks, simultaneously. Each of the data processors has a dedicated
memory storage area. They are directed by the instruction processor to store and retrieve
data to and from memory. The advantage of this system is the decrease in the amount of
logic on the data processors. Approximately 20 to 50 percent of a single processor’s
logic is dedicated to control operations. The rest of the logic is shared by register, cache,
arithmetic and data operations. The data processors have little or no control logic, which
allows them to perform arithmetic and data operations much more rapidly. A vector or
array processing machine is an example of an SIMD machine that distributes data across

Synergy User Manual and Tutorial

64

all memories (possibly stores each cell of an array or each column of a matrix in a
different memory area). These machines are designed to execute arithmetic and data
operations on a large number of data elements very quickly. A vector machine can
perform operations in constant time if the length of the vectors (arrays) does not exceed
the number of data processors. Most supercomputers, used for scientific computing in
the 1980’s and 1990’s, are based on this architecture.

Multiple instruction streams/single data stream (MISD) systems have multiple instruction
processors and a single data processor. Few of these machines have been produced and
have had no commercial success.

Multiple instruction streams/multiple data streams (MIMD) systems have multiple
instruction processors and multiple data processors. There are a diverse variety of MIMD
systems including those constructed from inexpensive off-the-shelf components to much
more expensive interconnected vector processors, and many other configurations.
Computers over a network that simultaneously cooperate to complete a single task are
MIMD systems. Computers that have two or more independent processors are another
example. A multiple independent processor machine has the ability to perform more than
one task, simultaneously.lvii

There are three types of performance gains received from parallel processing solutions
for the use of n processors:

• Sub-linear speedup is when the increase in speed is less than
o i.e. five processors yields only 3x speedup

• Linear speedup is when the increase is equal to n
o i.e. five processors yields 5x speedup

• Super-linear speedup is when the increase is greater than n
o i.e. five processors yields 7x speedup

Generally linear or faster speedup is very hard to achieve because of the sequential nature
of most algorithms. Parallel algorithms must be designed to take advantage of parallel
hardware. Parallel systems may have one shared memory area, to which all processors
may have access. In shared memory systems care must be taken to design parallel
algorithms that ensure mutual exclusion, which protects data from being corrupted when
operated on by more than one processor. The results from parallel operations should be
determinate, meaning they should be the same as if done by a sequential algorithm. As
an example, if two processors write to the same variable in memory such that:

• Processor 1 reads: x

• Processor 2 reads: x

Synergy User Manual and Tutorial

65

• Processor 1 writes: x = x + 1

• Processor 2 writes: x = x – 1

Depending on the possible orderings of the reads and writes the resulting variable could
be x–1, x+1 or x. This is a race condition and is an extremely undesirable because the
result depends on chance. Synchronization primitives, such as semaphores and monitors,
aid in the resolution of conflicts due to race conditions. The shared memory may be in a
single machine if it has more than one processor or a distributed shared memory, where
individual computers access the same memory area(s) located on another computer(s) on
the network.

Parallel processors must use some means to communicate. This is done on the system
buss and with shared memory in the case of a single computer with multiple processors.
When multiple machines are involved, communication can be implemented over a
network using either message passing or a distributed shared memory.

Cost is a very important consideration in distributed computing. A parallel system with n
processors is cheaper to build than a processor that is n-times faster. For tasks that need
to be completed quickly and can be performed by more than one thread of execution with
minimal concurrency, parallel processing is an exceptional solution. Many high-
performance or supercomputing machines have parallel processing architectures. The
parallel implementations discussed in the remainder of this book will be based on
distributed computing as opposed to single machines with multiple processors.

Synergy User Manual and Tutorial

66

Existing Tools for Parallel Processing

The parallel programming systems discussed, PVM, MPI and Linda, are implemented
with libraries of function calls that are coded directly into either C or Fortran source code
and compiled. There are two primary types of communication used: message passing
(PVM and MPI) and tuple space (Linda and Synergy). In message passing a participating
process may send messages to any other process, directly, which is somewhat similar to
inter-process communication (IPC) in the Linux/UNIX operating system. In fact, both
message passing and tuple space systems are implemented with sockets in the
Linux/UNIX environment. A tuple space is a type of distributed shared memory that is
used by participating processes to hold messages. These messages can be posted or
obtained by any of the participants. All of these programs function by the use of
“master” and “worker” designations. The master is generally responsible to break the
task into pieces and to assemble the results. The workers are responsible to complete
their piece of the task. These systems are communicate over computer networks and
typically have some type of middleware to facilitate cooperation between machines, such
as the cluster discussed below.

Computer Clusters

Computer clusters, sometimes referred to as server farms, are groups of connected
computers that form a parallel computer by working together to complete tasks. Clusters
were originally developed in the 1980’s by Digital Equipment Corporation (DEC) to
facilitate parallel computing and file and peripheral device sharing. An example of a
cluster would be a Linux network with some middleware software to implement the
parallelism. Well established cluster systems have procedures to eliminate single point
failures, providing some level of fault tolerance. The four major types of clusters are:

• Director based clusters—one machine directs or controls the behavior of the
cluster and usually implemented to enhance performance

• Two-node clusters—two nodes perform the same part of the task or one serves as
a backup in case the other fails to ensure fault tolerance

• Multi-node clusters—may have tens of clustered machines, which are usually on
the same network

• Massively parallel clusters—may have hundreds or thousands of machines on
many networks

Currently, the fastest supercomputing cluster is Earth Simulator at 35.86 TFlops, which is
15 TFlops faster than the second place machine. The main reason for cluster based

Synergy User Manual and Tutorial

67

supercomputing, after performance, is cost efficiency. The third fastest supercomputing
cluster is the 17.6 TFlop System X at Virginia Tech. It consists of 1100 dual processor
Apple Power Macintosh G5s running Mac OS X. It cost a mere $5.2 million, which is 10
percent of the cost of much slower mainframe supercomputers.

The Parallel Virtual Machine (PVM)

The Parallel Virtual Machine (PVM), a software tool to implement a system of
networked parallel computers, was originally developed by Oak Ridge National
Laboratory (ORNL) in 1989 by Vaidy Sunderam and Al Geist. Version 1 was a
prototype that was only used internally for research .PVM was later rewritten by
University of Tennessee and released as Version 2 in 1991, which was used primarily for
scientific applications. PVM Version 3, completed in 1993, supported fault tolerance and
provided better portability. This system supports C, C++ and Fortran programming
languages.

PVM allows a heterogeneous network of machines to function as a single distributed
parallel processor. This system uses message-passing model as a means to implement the
sharing of tasks between machines. Programmers use PVM’s message passing to take
advantage of the computational power of possibly many computers of various types in a
distributed system, making them appear to be one virtual machine. PVM’s API has a
collection of functions to facilitate parallel programming by message passing. To spawn
workers, the pvm_spawn() function is called:

int status = pvm_spawn(char* task, char** argv, int flag, char* where, int
ntask, int* tid);

where status is an integer that holds the number of tasks successfully spawned, task is the
name of the executable to start, argv is the arguments for the task program, flag is an
integer that specifies PVM options, where is the identifier of a host or system in which to
start a process, ntask is an integer holding the number of task processes to start, and tid is
an array to hold the task process ID’s. To end another task process, use the pvm_kill()
function:

int status = pvm_kill(int tid)

where status contains information about the operation, and tid is the task process number
to kill. To end the calling task, use the pvm_exit() function:

int status = pvm_exit();

Synergy User Manual and Tutorial

68

where status contains information about the operation. To obtain the task process ID of
the calling function, use the pvm_mytid() function:

int myid = pvm_mytid();

where myid is an integer holding the calling function’s task process ID. To obtain the
task process ID of the calling function’s parent, use the pvm_mytid() function:

int pid = pvm_parent();

where pid is an integer holding the parent function’s task process ID. To send a message,
the buffer must be initialized by calling the pvm_initsend() function:

int bufid = pvm_initsend(int encoding);

where bufid is the buffers ID number, and encoding is the method used to pack the
message. To pack a string message into the buffer, use the pvm_pkstr() function:

int status = pvm_pkstr(char* msg);

where status contains information about the operation, and msg is a null terminated
string. This function basically packs the array msg into the buffer. There are other
functions to pack arrays of other data into the buffer. For a complete listing, see the
PVM User’s Guide listed in the references. To send a message use the pvm_send()
function:

int status = pvm_send(int tid, int msgtag);

where status contains information about the operation, tid is the task process number of
the recipient, and msgtag is the message identifier. To receive a message, use the
pvm_recv() function:

int bufid = pvm_recv(int tid, int msgtag);

where bufid is the buffers ID number, tid is the task process number of the sender, and
msgtag is the message identifier. This is a blocking receive. Entering “-1” as the tid
value is a wildcard receive and will accept messages from all task processes. To unpack
a buffer, use the pvm_upkstr() function:

int status = pvm_upkstr(char* msg);

where status contains information about the operation, and msg is a string in which to
store the message. To compile and run a PVM application type:

Synergy User Manual and Tutorial

69

[c615111@owin ~/pvm]>aimk master slave
[c615111@owin ~/pvm]>master

The amik command compiles the application and the executable name of the master
executable runs the application. An example of a PVM “Hello worker—Hello master”
application is below. It demonstrates the structure of a basic PVM program. The master
program is:

// master.c: “Hello worker” program
#include <pvm3.h>
#define NUM_WKRS 3

main(){

 int status; // Status of operation
 int tid[NUM_WKRS];// Array of task ID’s all must be unique in system
 int msgtag; // Message tag to ID a message
 int flag = 0; // Used to specify options for pvm_spawn
 char buf[100]; // Message string buffer
 char wkr_arg0 = 0;// Null argument to activate workers
 char** wkr_args; // Array of args to activate workers
 char host[128]; // Host machine name

 // Set wkr_args to start worker program to address of wkr_arg0
 // which has been set to 0 (NULL)
 wkr_args = &wkr_arg0;

 // Get host machine name
 gethostname(host, sizeof(host));

 // Get my task ID and print ID and host name to screen
 printf("Master: ID is %x, name is %s\n", pvm_mytid(), host);

 // Spawn a program executable named “worker”
 // Will return the number of workers spawned on success or 0 on error
 // The empty string (fourth arg) requests any machine
 // Putting a name in this arg would request a specific machine
 status = pvm_spawn("worker", wkr_args, flag, "", NUM_WKRS, tid);

 // If spawn was successful it will return NUM_WKRS
 // since there are NUM_WKRS workers
 if(status == NUM_WKRS){

 // Label first message as 1
 msgtag = 1;

 // Put message in buffer
 sprintf(buf, "Hello worker from %s", host);

 // Initialize the send message operation
 pvm_initsend(PvmDataDefault);

Synergy User Manual and Tutorial

70

 // Transfer the message to PVM storage
 pvm_pkstr(buf);

 // Send the message signal to all workers
 for(i=0; i< NUM_WKRS; i++)
 pvm_send(tid[i], msgtag);

 // Print messages sent to workers
 printf(“Master: Messages sent to %d workers\n”)

 // Get replies from workers
 for(i=0; i< NUM_WKRS; i++){

 // Execute a blocking receive to wait for reply from any (-1) worker
 pvm_recv(-1, msgtag);

 // Put the received message in the buffer
 pvm_upkstr(buf);

 // Print the message
 printf("Master: From %x: %s\n", tid, buf);

 }

 // Print end message
 printf(“Master: Application is finished\n”);

 }

 // Else the spawn was not successful
 else
 printf("Cannot start worker program\n");

 // Exit application
 pvm_exit();
}

The master program spawns a number of workers, sends the “Hello worker…” message
and waits for a reply. After the reply is received, it is printed to screen and the master
terminates. The worker program is:

// worker.c: “Hello Master” program
#include <pvm3.h>

main(){

 int ptid; // Parents task ID
 int msgtag; // Message tag to ID a message
 char buf[100]; // Message string buffer
 char host[128]; // Host machine name
 FILE* fd; // File in which to write master’s message

// Open file to store message
fd = fopen(“msg.txt”, "a");

Synergy User Manual and Tutorial

71

 // Get host machine name
 gethostname(host, sizeof(host));

 // Get parents task ID
 ptid = pvm_parent();

 // Label first message as 1
 msgtag = 1;

 // Execute a blocking receive to wait for message from master
 pvm_recv(ptid, msgtag);

 // Put the received message in the buffer
 pvm_upkstr(buf);

 // Print the message to file
 fprintf(fd, "Worker: From %x: %s\n", ptid, buf);

 // Put reply message in buffer
 sprintf(buf, "Hello master from %s", host);

 // Initialize the send message operation
 pvm_initsend(PvmDataDefault);

 // Transfer the message to PVM storage
 pvm_pkstr(buf);

 // Send the message signal to master
 pvm_send(ptid, msgtag);

 // Close file
 fclose(fd);

 // Exit application
 pvm_exit();
}

The worker waits for the initial message from the master, writes the message to a file,
sends a reply and terminates. The output on the master machine would resemble:

[c615111@owin ~/pvm]>master
Master: ID is 0, name is owin
Master: Messages sent to 3 workers
Master: From 3: Hello master from saber
Master: From 1: Hello master from sarlac
Master: From 2: Hello master from owin
Master: Application is finished

All the workers output can be redirected to the master’s terminal by running the
application in PVM’s console, which can be started by typing:

[c615111@owin ~/pvm]>pvm

Synergy User Manual and Tutorial

72

pvm>spawn -> master

Typing “pvm” at the command prompt activates the console and typing “spawn ->
master” at the console prompt executes the application in console mode. The “->” causes
all worker screen output to be printed on the masters terminal. At any point or time in a
parallel application any executing PVM task (worker) may:

• Create or terminate other tasks

• Add or remove computers from the parallel virtual machine

• Have any of its process communicate with any other task’s processes

• Have any of its process synchronize with any other task’s processes

By proper use of PVM constructs and host language control-flow statements, any specific
dependency and control structure may be employed under the PVM system. Because of
its easy to use programming interface and its implementation of the virtual machine
concept, PVM became popular in the high-performance scientific computing community.
Currently it is not being developed but it made a significant contribution to modern
distributed processing designs and implementations.lviii

Message Passing Interface (MPI/MPICH)

The Message Passing Interface (MPI) is a communications protocol that was introduced
in 1994. It is the product of a community effort to define the semantics and syntax for a
core set of message passing libraries for use by a wide variety of users and that could be
used on a wide variety of MPP systems. MPI is not a standalone parallel system for
distributed computing because it does not include facilities to manage processes,
configure virtual machines or support input/output operations. It has become a standard
for communication among machines running parallel programs on distributed memory
systems. MPI is primarily a library of routines that can be invoked from programs
written in the C, C++ or Fortran languages. Its differential advantages over older
protocols are portability and performance. Its more portable because MPI has an
implementation for almost every distributed system and faster because it is optimized for
the specific hardware on which it is run. MPICH is the most commonly used
implementation of MPI.

The MPI API has hundreds of function calls to perform various operations within a
parallel program. Many of these function calls are similar to IPC calls in the UNIX
operating system. Some of the basic MPI functions will be briefly explained and used in
an example program. Before any MPI operations can be used in a program the MPI
interface must be initialized with the MPI_Init() function:

Synergy User Manual and Tutorial

73

MPI_Init(&argc, &argv);

where argc is the number of arguments and argv is a vector of strings, both of which
should be taken as command line arguments because the same program will be used for
both the master and worker processes in the example application. After initialization, a
program must determine its rank by calling MPI_Comm_rank(), designated by process
number, to determine if it is the master or a worker process. The master will be process
number 0. The function call is:

MPI_Comm_rank(MPI_Comm comm, int* rank);

where comm is a communicator and is defined in MPI’s libraries and rank is a reference
pointer to an integer to hold this process’ rank. It may also be necessary for an
application to determine the number of currently running processes. The
MPI_Comm_size() function returns this number. The function call is:

MPI_Comm_size(MPI_Comm comm, int* size);

where comm is a communicator and is defined in MPI’s libraries and size is a reference
pointer to an integer to hold the number processes. To send a message to another process
the MPI_Send() function is used as such:

MPI_Send(void* msg, strlen(msg)+1, MPI_Datatype type, int dest, int tag,
MPI_Comm comm);

where msg is a message buffer, strlen(msg)+1 sets the length of the message and its null
terminal, type is the data type of the message as defined by MPI’s libraries, dest is an
integer holding the process number of the destination, tag is an integer holding the
message tag, and comm is a communicator and is defined in MPI’s libraries. This is a
blocking send and will wait for the destination to receive the message before executing
further instructions. To receive a message the MPI_Recv() function is used as such:

MPI_Recv(void* msg, int size, MPI_Datatype type, int source, int tag, MPI_Comm
comm, MPI_Status* status)

where msg is a message buffer, is an integer holding the size actual size of the receiving
buffer, type is the data type of the message as defined by MPI’s libraries, source is an
integer holding the process number of the source, tag is an integer holding the message
tag, comm is a communicator and is defined in MPI’s libraries, and status is the data
about the receive operation. To end an MPI application session the MPI_Finalize()
function is called:

Synergy User Manual and Tutorial

74

MPI_Finalize();

which disables the MPI interface. To compile and run an MPI application type:

[c615111@owin ~/mpi]>mpicc -o hello hello.c
[c615111@owin ~/mpi]>mpirun –np 4 hello

The mpirun command activates a MPI application named “hello” with 4 processes (1
master and 3 workers) and the mpicc command is actually not a proprietary compiler. It
is a definition that is equivalent a call to the cc compiler with the following arguments to
access the proper libraries:

[c615111@owin ~/mpi]>cc -o hello hello.c -I/usr/local/mpi/include\
-L/usr/local/mpi/lib -lmpi

An example of an MPI application is:

// hello.c program
#include <stdio.h>
#include “mpi.h”

main(int argc, char** argv){

 int my_rank; // Rank of process
 int p; // Number of processes
 int source; // Rank of sender in loops
 int dest; // Rank of receiver
 int tag = 50; // Tag for messages
 char buf[100]; // Storage buffer for the message
 MPI_Status status; // Return status for receive
 FILE* fd; // File in which to write master’s message

// Open file to store message
fd = fopen(“msg.txt”, "a");

 // Get host machine name
 gethostname(host, sizeof(host));

 // Initialize MPI application session
 // No MPI functions may be used until this is called
 // This function may only be called once
 MPI_Init(&argc, &argv);

 // Get my rank
 // Master’s rank will be ‘0’
 // Worker’s ranks will be greater than ‘0’
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 // Get the number of running processes
 MPI_Comm_size(MPI_COMM_WORLD, &p);

 // If my_rank != 0, I am a worker

Synergy User Manual and Tutorial

75

 if (my_rank != 0){

 // Set source to ‘0’ for master
 source = 0;

 // Receive message from master i
 MPI_Recv(buf, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);

 // Print the message to file
 fprintf(fd, "Worker: %s\n", buf);

 // Put reply in buffer
 sprintf(buf, “Hello master from %s number %d”, buf, my_rank);

 // Set destination to ‘0’ for master
 dest = 0;

 // Send the reply to master
 // Use strlen(buf)+1 to include '\0'
 MPI_Send(buf, strlen(buf)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

 }

 // Else my_rank == 0 and I am the master
 else{

 // Get my task ID and print ID and host name to screen
 printf("Master: ID rank %d, name is %s\n", my_rank, host);

 // Put reply in buffer
 sprintf(buf, “Hello worker from %s number %d”, buf, my_rank);

 // Send messages to all workers
 for (dest=1; dest<p; dest++){

 // Send messages to workers
 MPI_Send(buf, strlen(buf)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

 // Print message to screen
 printf(“Master: Sent: %s to %d\n”, buf dest);

 }

 // Get replies from all workers
 for (source=1; source<p; source++){

 // Receive reply from worker i
 MPI_Recv(buf, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);

 // Print message to screen
 printf(“Master: Received: %s\n”, buf);

 }

 }

Synergy User Manual and Tutorial

76

 // Close file
 fclose(fd);

 // Print end message
 printf(“Master: Application is finished\n”);

 // End MPI application session
 // No MPI functions may be called after this function is called
 MPI—Finalize();
}

The screen output on the master machine would resemble:

Master: ID rank 0, name is owin
Master: Sent: Hello worker from owin number 0 to 1
Master: Sent: Hello worker from owin number 0 to 2
Master: Sent: Hello worker from owin number 0 to 3
Master: Received: Hello master from saber number 3
Master: Received: Hello master from owin number 1
Master: Received: Hello master from sarlac number 2
Master: Application is finished

Linda

Linda is an environment and coordination language for parallel processing that was
initially developed as a research project and a commercial product at Yale University by
David Gelernter and Nicolas Carriero. Linda’s design is based on a compromise between
message passing and shared memory within a distributed parallel processing system.
This system introduced the concept of a tuple space, which is a distributed shared
memory area in which machines can communicate by reading, taking or putting tuples.

A single tuple space is created when the master program is executed. Tuples are similar
to a vector data type but do not have specified primitive or structured data types
contained within them. This allows any data to be stored in a binary format within the
tuple space. Any combination of mixed data types can be placed not only into a tuple
space but also in individual tuples within the space. Linda tuples may have a maximum
of 16 fields, which are separated by commas. Entries in the tuple space are identified by
names or numerical values in the tuple’s data rather than as an address in local machines.
An example of a tuple space entry with 3 fields is:

(“string”, 123, 45.678);

which contains a character string, an integer and a floating point number, respectively.
There are two kinds of tuples in Linda: active tuples, also called live or process tuples,
are tuples that are under active evaluation, and passive tuples, also called data tuples, are

Synergy User Manual and Tutorial

77

entries in the tuple space similar to the example above. Active tuples are created with the
eval() function. The function call:

eval(“worker”, worker());

would create a tuple entry with “worker” in the first field and spawn a new process that
will immediately call the worker() function. Passive tuples are created and added to the
tuple space with the Linda’s out() function. The function call:

out(“string”, 123, 45.678);

would create the tuple and add it to the tuple space.

Data can be either read or removed from the tuple space. A template is used to retrieve a
tuple from the tuple space by matching a pattern in the fields of a tuple’s fields. The
following conditions must be met to match a template to a tuple:

1. The template and tuple both must have the same number of fields.
2. The template and tuple both must have the same types, values, and length of all

literal values in corresponding fields.
3. The template and tuple both must have matching types and lengths of all formals

in the corresponding fields.

A read operation, using the rd() function, leaves the tuple for other processes to access.
The function call:

rd(“string”, 123, ? A);

reads a three entry tuple that has “string” as its first element and 123 as its second. The
data in the third element is placed in the A variable. The in() function gets and removes
an entry from the tuple space. The function call:

in(“string”, 123, ? A);

gets a three entry tuple that has “string” as its first element and 123 as its second. The
data in the third element is placed in the A variable and the entry is removed from the
tuple space.

Programming for a tuple space is similar to programming for shared memory because all
participating processes share it. However it is also similar to message passing because
entries are posted and taken from it. The major benefit of this system is that participants
can enter and leave the system without formerly announcing an arrival or departure.

Synergy User Manual and Tutorial

78

They can also take messages, data or tasks from the tuple space at their own pace, which
can balance the workload, giving more work to machines capable of greater performance,
and decrease the overall duration of a given task. Tuple spaces and load balancing will
be discussed further in later sections.

It should also be noted that Linda tuple spaces do not observe a first in first out (FIFO)
structure. Reading or retrieving an entry may not necessarily obtain the oldest entry,
which may cause programming errors if this structure is assumed. Linda parallel
programs are written with both the master and worker programs in the same source file.
The master function is the main function and the worker is a named function. Linda has
its own built in compiler to compile the executable. To compile and execute a distributed
network application type:

[c615111@owin ~/linda]>clc -o hello hello.cl
[c615111@owin ~/linda]>ntsnet hello

The clc command activates Linda’s compiler and the ntsnet command executes the hello
program as a network application. An example of a Linda master or main function for
the “Hello worker—Hello Master” application is:

// hello.cl program
#define NUM_WKRS 3

real_main(int argc, char* argv){

 int i; // Loop counter
 int hello(); // Function declaration
 char buf[100]; // Message string buffer
 char host[128]; // Host machine name

 // Get host machine name
 gethostname(host, sizeof(host));

 // Print master’s name
 printf("Master: Name is %s\n", host);

 // Put message in buffer
 sprintf(buf, "Hello workers from %s", host);

 // Put the message in the tuple space
 out("message", buf);

 // Start the workers
 for (i=0; i< NUM_WKRS; i++)

 // Start an active tuple (a worker process)
 eval("worker", worker(i));

 // Get all workers’ reply from tuple space

Synergy User Manual and Tutorial

79

 for (i=0; i< NUM_WKRS; i++){

 // Get reply and remove from tuple space
 in("reply", ? buf);

 // Print reply to screen
 printf(“Master: %s\n”, buf);

 }

 // Print end message to screen
 printf("Master: Application is finished\n");

 // End the master
 return(0);
}

An example of a worker function is:

// The worker function
worker(int i){

 char buf[100]; // Message string buffer
 char host[128]; // Host machine name

 // Get host machine name
 gethostname(host, sizeof(host));

 // Read the message from tuple space
 rd(“message”, ? buf);

 // Print the message to screen
 printf("Worker: %s number %d got %s\n", host, i, buf);

 // Put message in buffer
 sprintf(buf, "Hello master from %s number %d", host, i);

 // Put reply in tuple space
 out("reply", buf);

 // Print end message to screen
 printf("Worker: %s finished\n");

 // End the worker
 return(0);

}

Linda prints both the master and workers’ output to the master’s screen. The screen
output on the master machine would resemble:

[c615111@owin ~/fpc01]>ntsnet hello
Master: Name is owin

Synergy User Manual and Tutorial

80

Worker: saber number 1 got Hello workers from owin
Worker: owin number 0 got Hello workers from owin
Worker: owin finished
Worker: sarlac number 2 got Hello workers from owin
Master: Hello master from sarlac number 2
Worker: saber finished
Worker: sarlac finished
Master: Hello master from saber number 1
Master: Hello master from owin number 0
Master: Application is finished

It should also be noted that global variables in Linda applications are not transferred to
workers. Using global variables will have unpredictable results.lix

Synergy User Manual and Tutorial

81

Parallel Programming Concepts

Stateless Parallel Processing (SPP)

The Stateless Parallel Processing architecture is comprised of “fully configured
computers” connected by a “multiple redundant switching network” that form a
“unidirectional virtual ring network”, as shown below. Multiple direct paths are provided
from each node to every other node. Redundancy allows for scalable performance and
fault tolerance.

Multiple
Redundant
Switching
Network

Fully
Configured
Computers

Unidirectional
Virtual Ring
Network

The Stateless Parallel Processing Architecture

Please note that the unidirectional “virtual” network is implemented through the multiple
redundant switching network’s hardware and is not an actual physical ring. Each
computer might have only one network interface adapter card. Each node on the virtual
ring is aware of every other node because each maintains a current list of all participating
nodes. Each node can also detect and isolate faulty nodes. The SPP virtual ring’s
responsibility is limited to tuple queries and SPP backbone management. Tuple data is
transmitted directly from point to point. This ring also provides full bandwidth support
for multicast communication through the network, where all nodes can access multicast

Synergy User Manual and Tutorial

82

messages. The diagram below shows a conceptual representation of a unidirectional
virtual ring, where the arrows may represent possibly a single multicast message that all
nodes can acquire. The multiple switch network can transport a massive amount of data
between machines.

P1

P2

P3

P4

P5

P8

P7

P6

The Unidirectional Virtual Ring Configuration

The tuple space model allows participating processes to acquire massages from a current
tuple space without temporal restrictions. Processes can take messages when they are
ready without causing a work stoppage, unlike communication methods that uses a
blocking send. In this design, tuples flow freely through the network from process to
process. Each process will perform a part of the task by taking work date tuples from the
tuple space at its own pace. The processes are purely data driven and will activate or
continue processing only when it receives required data. There are no explicit global
state controls in this “stateless” system, which ensures fault tolerance. If a process fails
the system can recover because the data can be renewed in the tuple space and taken by
another worker process.

SPP applications use a parallel processing model called “scatter and gather”, involving
master and worker processes. A master process is the application controller for the
worker processes. In a single task, single pass application, it divides the task into n
subtasks, places the work data tuples in a tuple space, collects the completed subtasks

Synergy User Manual and Tutorial

83

from a tuple space, and directs the workers to terminate when all of the results are
received. The three diagrams below show possible contents during an applications
execution.

The

left-most diagram shows a problem tuple space, where work data is stored, after
messages to workers and work data tuples have received. The center shows a result tuple
space, where the master will receive completed subtasks. The right-most diagram shows
a problem tuple space with a termination tuple, also called a poison pill, which instructs
the workers to terminate. Notice that the message tuples remain in the tuple space and
that the data tuples are removed. This is because the messages were accessed by a read
operation and the data tuples were accessed by a take operation. If the terminal message
is accessed by a take operation, it must be replaced so that the next worker can access it.
This scenario assumes a parallel system that can create multiple tuple spaces, such a
synergy. If the system is limited to one, then it depends more heavily on name pattern
matching of tuples.

The master program with its accompanying tuple spaces can reside on any participating
node. The worker processes take work tuples from the tuple space that match a tuple
query, put the results into the result tuple space, until all work is completed, and
terminate when they get the terminate message tuple from the master. The diagram
below shows a possible master-worker configuration. It should be noted that the master
machine generally has both a master process and a worker process. Otherwise a valuable
system resource would be wasted because the master machine would be idle between
receiving results.

Owin Saber Sarlac Luke

(A message tuple)

(Another message tuple)
(Data tuple 1)

ProblemTuple Space

(Data tuple 2)

(Data tuple n)

..
.

Owin Saber Sarlac Luke

(Result tuple 1)

Result Tuple Space

(Result tuple 2)

(Result tuple n)

..
.

Owin Saber Sarlac Luke

(A message tuple)

(Another message tuple)

ProblemTuple Space

(Termination tuple)

Synergy User Manual and Tutorial

84

Multiple
Switching
Network

Nodes Running
Worker
Programs

Initial
Requests Are
Multicast On
Virtual Ring
Network

W

W

W

W

W

W

W

M

Node Running
Master
Program

The SPP Architectural Support

Stateless Machine (SLM)

A stateless machine (SLM) is a fully implemented stateless parallel processing system.
An SLM should provide an API that offers a robust but easy to use interface with the
system’s functionality. It should have a fault tolerance facility to recover from dropped
hosts and lost data. The network structure should offer high efficiency and high
performance. The locations of processes should be transparent for all participating
processes in the application, meaning that the system should handle communication
between machines and not be directly noticeable to running programs. The workload
should be balanced between the participating processes, where each process is kept busy
until all work is complete.

Linda Tuple Spaces Revisited

Synergy User Manual and Tutorial

85

As previously mentioned, the tuple space was first defined in the Linda distributed
parallel programming implementation as a method of multi-machine inter-process
coordination. It’s easiest to think of a Linda tuple space as a buffer, a virtual bag or a
public repository that cooperating processes from different computers can put tuples in,
or read and get tuples from. It’s a type of distributed shared memory, where any process
can access any tuple, regardless of its storage location. A tuple space is not a physical
shared memory. It is a logical shared memory because processes have to access it
through an intermediary or tuple handling process. The API only makes the tuple space
appear to be physically shared memory. The computers, though physically dispersed,
must be part of some distributed system. The machines can communicate with each other
without really being aware that any of the other machines exist, other than the data passed
through the tuple space. Heterogeneous data types can be stored in tuples and differently
structured tuples can be placed in the tuple space. Hence, all of the following data types:

char name[4] = {“Bob”};
int number = 12;
double fraction = 34.56;

can be placed in the same tuple:

(name, number, fraction)

and all of the following tuples:

(name, number, fraction)
(102, 73, 36, 125, 67.5, 1000)
(“Sally”, “123 Broad St”, “Philadelphia PA 19024”, “555-123-4567”)

can be placed in the same tuple space.

Synergy User Manual and Tutorial

86

Owin Saber Sarlac Luke

("Bob", 12, 34.56)

(102, 73, 36, 125, 67.5, 1000)

("Sally", "123 Broad St",

"Philadelphia PA 19024",

"555-123-4567")

Tuple Space

Tuples are placed in and retrieved from tuple spaces by function calls, previously
described, that match a pattern from a template. A template is essentially a tuple that is
used to express a pattern. The template:

(? A, 12, ? B)

where A is a string and B is a double, matches:

(name, number, fraction) = (“Bob”, 12, 34.56)

However, this template will not match the other tuples in the example above. The
general rules for a Linda tuple were stated previously. This is called an associative
memory because elements or tuples in the memory are accessed by associating them,
synonymously, with a pattern in their content as opposed to being referenced by a
memory address or physical location.

Active tuples in Linda are based on the generative communication model, where
dynamically spawned processes are turned into data upon completion of their task. The
eval(“worker”, worker()) function will leave a tuple in the tuple space with two fields
from the called worker function:

worker(){
 // perform task

Synergy User Manual and Tutorial

87

 return 0;
}

will place a tuple with the name assigned from the process that spawned the worker
function in the first field (in this case “worker”) and the return value of the worker
function. All tuples placed by the worker into the tuple space will be accessible by all
other processes even after the worker terminates. The tuple from the example above after
the eval() function returns would be:

(“worker”, 0)

Since the concept was pioneered at Yale, many languages have been implemented using
variants of Linda’s tuple space model, including LiPS, ActorSpaces, TSpace,
PageSpaces, OpenSpaces, Jini/Javaspaces, Synergy, etc.

Synergy User Manual and Tutorial

88

Theory and Challenges of Parallel Programs and Performance

Evaluation

Basic Logic

Logic is the study of the reasoning of arguments and is both a branch of mathematics and
a branch of philosophy. In the mathematical sense, it is the study of mathematical
properties and relations, such as soundness and completeness of arguments. In the
philosophical sense, logic is the study of the correctness of arguments. A logic is
comprised of an informal language coupled with model-theoretic semantics and/or a
deductive system. The language allows the arguments to be stated, which is similar to
the way we state our thoughts in written or spoken languages. The semantics provide a
definition of possible truth-conditions for arguments and the deductive system provides
inferences that are correct for the given language.

This section introduces formal logics that can be used as methods to design program logic
and prove that the logic is sound. Systems based on propositional logic have been
produced to facilitate the design and proofs for sequential programs. However, these
systems were inadequate for concurrent applications. Variations of temporal logic, which
is based on modal logic, are used to evaluate the logic of concurrent programs.

Propositional Logic

Symbolic logic is divided into several parts of which propositional calculus is the most
fundamental. A proposition, or statement, is any declarative sentence, which is either
true or false. We refer to true (T) or false (F) as the truth-value of the statement.

“1 + 1 = 2” is a true statement.
“1 + 1 = 11” is a false statement.
“Tomorrow will be a sunny day” is a proposition whose truth is yet to be determined.
“The number 1” is not a proposition because it is not a sentence.

Simple statements are those that represent a single idea or subject and contain no other
statements within. Simple statements will be represented by the symbols: p, q, r and s. If
p stands for the proposition: “ice is cold”, we denote it as:

p: “ice is cold”,

which is read as:

Synergy User Manual and Tutorial

89

p is the statement “ice is cold”.

The following is an example of a simple statement assertion and negation.

p assertion p is true if p is true or p is false if p is false.
¬p negation ¬p is false if p is true or ¬p is true if p is false.

Then for the true statement: p: “ice is cold”, ¬p is the statement that “ice is not cold”,
which is false.

A compound statement is made up of two or more simple statements. The simple
statements are known as components of the compound statement. These components
may be made up of smaller components. Operators, or connectives, separate

components. The sentential connectives are disjunction (∨, pronounce as OR),

conjunction (∧, pronounce as AND), implication (→, pronounce as IF) and equivalence

(↔, pronounce as IF AND ONLY IF). These are called sentential because they join
statements, or sentences, into compound sentences. They are binary operators because
they operate on two components or statements. Equivalence statements (p↔q) are also

called biconditionals, and implication statements (p→q) are also called conditionals. In

the p → q conditional statement, the "if- clause" or first statement, p, is called the
antecedent and the "then-clause" or second statement, q, is called the consequent. The
antecedent and consequent could be compounds in more complicated conditionals rather
than the simple statements shown above. These terms are used for all the binary
operators listed above. Negation (¬) is called a unary operator because it only operates
on one component or statement. The following define the conditions under which
components joined with connectives are true; otherwise they are false:

p∨q disjunction either p is true, or q is true, or both are true

p∧q conjunction both p and q are true

p→q implication if p is true, then q is true

p↔q equivalence p and q are either both true or both false

The statements:

p: “ice is cold”
q: 1 + 1 = 2
r: “water is dry”
s: 1 + 1 = 11

under conjunction:

Synergy User Manual and Tutorial

90

p∧q is true because “ice is cold” is true and “1 + 1 = 2” is true
p∧r is false because “ice is cold” is true and “1 + 1 = 11” is false
s∧q is false because “1 + 1 = 11” is false and “1 + 1 = 2” is true
r∧s is false because “water is dry” is false and “1 + 1 = 11” is false

All meaningful statements will have a truth-value. The truth-value of a statement
designates the statement as true T or false F. The statement p is either absolutely true or
absolutely false. If a compound statement’s truth-value can be determined in its entirety
based solely on its components, the compound statement is said to be truth-functional. If
a connective constructs compounds that are all truth-functional, the connective is said to
be truth-functional. Using these conditions it is possible to build truth-functional
compounds from other truth-functional compounds and connectives. As an example: if
the truth-values of p and of q are known, then we could deduce the truth-value of the
compound using the disjunction connective, p∨q. This establishes that the compound,
p∨q, is a truth-functional compound and disjunction is a truth-functional connective. A
truth table contains all possible truth-values for a given statement. The truth table for p
is:

p

T

F

because the simple statement p is either absolutely true or absolutely false. The
following is the truth table of p and q for the five previously mentioned operators:

p q ¬p ¬q p∨q p∧q p→q p↔q

T T F F T T T T

T F F T T F F F

F T T F T F T F

F F T T F F T T

Parentheses () are used to group components into whole statements. The whole

compound statement p∧q can be negated by grouping it with parentheses and negating

the group ¬(p∧q). The table below shows all negated truth-values for the operators
previous table.

p q ¬(¬p) ¬(¬q) ¬(p∨q) ¬(p∧q) ¬(p→q) ¬(p↔q)

T T T T F F F F

T F T F F T T T

F T F T F T F T

F F F F T T F F

Synergy User Manual and Tutorial

91

To avoid an excessive number of parentheses in statements, there is a standard for
operator precedence. This simply means the order in which operations are performed.
Negation has precedence over conjunction and conjunction has precedence over
disjunction. The statement:

¬p∨q is (¬p)∨q not ¬(p∨q)

and

¬p∨q∧r is ((¬p) ∧q)∨r

A truth table will have 2n rows, where n is the number of distinct simple statements in the
whole statement. The first truth table for p had only two rows and the previous two had
four rows. If p, q and r were under consideration, there would be eight rows. To find

which values for p, q, and r will evaluate to true for P(p, q, r) = ¬(p∨q)∧(r∨p), construct a
truth table for the statement. Start by placing true values in the top row and false values
in the next from the bottom row for one instance of each unique simple statement as
shown below. The last row is to maintain the steps performed by operator precedence
and parentheses. Mark all simple statements step 1.

¬ (p ∨ q) ∧ (r ∨ p)

 T T T

 F F F

 1 1 1 1

Then assume all F’s are 0’s and all T’s are 1’s, and count up the table from 0 to 7 in
binary. Then copy values to all other duplicate simple statements.

¬ (p ∨ q) ∧ (r ∨ p)

 T T T T

 T T F T

 T F T T

 T F F T

 F T T F

 F T F F

 F F T F

 F F F F

Synergy User Manual and Tutorial

92

 1 1 1 1

This holds all combinations of F’s and T’s relative to the three simple statements.
Remember the pattern in the columns and you wont have to count next time. Next mark
the second set columns to be evaluated by precedence and fill in the truth-values.
Because of the parentheses, the next columns will be the third and seventh.

¬ (p ∨ q) ∧ (r ∨ p)

 T T T T T T

 T T T F T T

 T T F T T T

 T T F F T T

 F T T T T F

 F T T F F F

 F F F T T F

 F F F F F F

 1 2 1 1 2 1

Negation has precedence over conjunction. Hence the first column is the negation of the
third. To find the truth-values for conjunction, consider the highest values in the last row
on each side, which is column one on the left and column seven on the right.

¬ (p ∨ q) ∧ (r ∨ p)

F T T T F T T T

F T T T F F T T

F T T F F T T T

F T T F F F T T

F F T T F T T F

F F T T F F F F

T F F F T T T F

T F F F F F F F

3 1 2 1 4 1 2 1

The statement is only true for P(p, q, r) = P(F, F, T).

Again if p, q and r were under consideration, values for p, q, and r will evaluate to true

for Q(p, q, r) = (p→q)∧[(r↔p)∨(¬p)], construct a truth table for the statement. Also note
that brackets [] and braces { } can be used to differentiate compound groupings up to
three levels.

(p → q) ∧ [(r ↔ p) ∨ (¬ p)]

T T T T T T T T F T

T T T F F F T F F T

T F F F T T T T F T

Synergy User Manual and Tutorial

93

T F F F F F T F F T

F T T T T F F T T F

F T T T F T F T T F

F T F T T F F T T F

F T F T F T F T T F

1 2 1 4 1 2 1 3 2 1

There are three types of propositional statements that can be deduced from all truth-
functional statements:

• If the truth-value column for the table has a mixture of T’s and F’s, the table’s
statement is called a contingency.

• If the truth-value column contains all T’s, the statement is called a tautology.

• Lastly, if the truth-value column contains all F’s, the statement is called a
contradiction.

The following logical equivalences apply to any combination of statements used to create
larger compound statements. The p's, q's and r' s can be atomic statements or compound
statements.

The Double Negative Law ¬(¬p) ≡ p
The Commutative Law for conjunction p∧q ≡ q∧p
The Commutative Law for disjunction p∨q ≡ q∨p
The Associative Law for conjunction (p∧q)∧r ≡ p∧(q∧r)
The Associative Law for disjunction (p∨q)∨r ≡ p∨(q∨r)
DeMorgan's Law for conjunction ¬(p∨q) ≡ (¬p)∧(¬q)
DeMorgan's Law for disjunction ¬(p∧q) ≡ (¬p)∨(¬q)
The Distributive Law for conjunction p∧(q∨r) ≡ (p∧q)∨(p∧r)
The Distributive Law for disjunction p∨(q∧r) ≡ (p∨q)∧(p∨r)
Absorption Law for conjunction p∧p ≡ p
Absorption Law for disjunction p∨p ≡ p
Conditional using negation and disjunction p→q ≡ (~p)∨q
Equivalence using conditionals and conjunction p↔ ≡ (p→q)∧(q→p)

Predicate Calculus

Another part of symbolic logic is predicate calculus, which is built from propositional
calculus. Predicate calculus allows logical arguments based on some or all variables
under consideration. Consider the following arguments, which cannot be expressed in
propositional logic:

All dogs are mammals

Synergy User Manual and Tutorial

94

Fido is a dog
Therefore, Fido is a mammal

The three statements:

p: All dogs are mammals
q: Fido is a dog

r: Fido is a mammal

are of the form:

 p
 q

∴ r

can be independently evaluated under propositional logic but cannot be evaluated to

derive the conclusion “r: Fido is a mammal” because “therefore” (‘∴’) is not a legitimate
propositional logic operator. We need to expand propositional calculus and set theory to
make use of the predicate calculus.

We use the universal quantifier ∀, which means for all or for every, to establish a
symbolic statement that includes all of the things in a set X that we are considering as
such:

∀x[Px→Qx]

The brackets define the scope of the quantifier. This example is read “For every variable
x in set X, if Px then Qx”. Applied to the example above, we could reword the statement
“All dogs are mammals” by letting Px be: “if x is a mammal” and Qx be “then x is a
mammal”. We have:

“For all x, if x is a dog, then x is a mammal”.

This is called a statement form and will become a statement when x is given a value. Let
f = Fido. A syllogism is a predicate calculus argument with two premises sharing a
common term.

 ∀x[Px→Qx]
 Pf

∴ Qf

Synergy User Manual and Tutorial

95

The predicate P means “is a dog” and Q means “is a mammal”. The conclusion states
that because Fido is a dog, Fido is a mammal. If we negate the quantifier as such:

¬∀x[Px→Qx]

The statement becomes:

“Not every dog is a mammal”.

Which sounds ridiculous but the statement is permissible by predicate logic. We can
change this to:

∀x[Px→¬Qx]

Which translates to:

“Some dogs are not mammals”.

Mathematical statements can be constructed using propositional calculus. The statement:

“If a integer is less than 10, then it is less than 11”

This statement can be converted using the universal quantifier so that is true for every

integer x (x ∈ N) less than 10 as such:

∀x ∈ N [(x<10) → (x<11)].

Which translates to:

“For every x that is an integer, if x is less than 10, then x is less then 11”.

If a logical statement is to be constructed for one or more members of a set but not

necessarily all, we can use the existential quantifier, ∃, which means “there exists” of “for
some”. The statement:

“Some lawyers speak the truth”,

would be restated as:

“There exists a lawyer that speaks the truth”.

Synergy User Manual and Tutorial

96

If we let Px be “x is a lawyer” and Qx be “x speaks the truth”, we have:

∃x [Px ∧ Qx],

which states that at least one lawyer speaks the truth. Quantifiers can be applied to more
then one variable in a statement.

Let P be “is a shoe in my closet”, where x is a right shoe and y is a left shoe. Then:

∀x, ∃y[Px ∧ Py],

is a symbolic representation of the statement: “For every right shoe in my closet, there
exists a left shoe”. A mathematical statement would be:

∃z ∈ N [x = y×z], x ∈ N, y ∈ N,

which states that there exists an integer z, such that integer x is divisible by integer y.lx

Modal Logic

Modal logic extends the capabilities of traditional logic to include modal expressions,
which contain premises such as “it is necessary that…” or “it is possible that…”. Modal
logic is the study of deductive behavior of expressions based on necessary and/or
possible premises. Modal logic can also be defined as a family of related logical systems
that include logics for belief and temporal related expressions. The table below contains
some common symbols and definitions used in the modal logic family:

Logic Symbols Expressions Symbolized

Modal Logic It is necessary that …

 ◊ It is possible that …
Deontic Logic O It is obligatory that …
 P It is permitted that …
 F It is forbidden that …
Temporal Logic
 G It will always be the case that …
 F It will be the case that …
 H It has always been the case that …
 P It was the case that…
 Doxastic Logic

 Bx x believes that …

Synergy User Manual and Tutorial

97

A popular weak modal logic K, conceived by Saul Kripke, .defines three operators:

“negation” (¬), “if…then…” (→), and “it is necessary that…” (). The other
connectives, “and” (∧), “or” (∨), and “if and only if” (↔), can be defined by ¬ and → as

in propositional logic. The operator “possibly” (◊) can be defined by ◊A = ¬¬A. In
addition to the standard rules in propositional logic, K has the following rules:

Necessitation Rule: If A is a theorem of K, then so is A.

Distribution Axiom: (A → B) → (A → B).

The necessitation rule states that all theorems are necessary and the distribution axiom
states that “if it is necessary that if A then B, then if necessarily A then necessarily B”. A
and B range over all possible formulas for the language.

(M) A → A

(4) A → A

(5) ◊A → ◊A

(S4): … = and ◊◊…◊ = ◊
(S5): 00… = and 00…◊ = ◊, where each 0 is either or ◊

(B) A → ◊A

Axiom Name Axiom Condition on Frames R is...

(D) A → ◊A ∃u wRu Serial

(M) A → A wRw Reflexive

(4) A → A (wRv ∧ vRu) → wRu Transitive

(B) A → ◊A wRv → vRw Symmetric

(5) ◊A → ◊A (wRv ∧ wRu) → vRu Euclidean

(CD) ◊A → A (wRv ∧ wRu) → v = u Unique

(M) (A → A) wRv → vRv Shift Reflexive

(C4) A → A wRv → ∃u(wRu∧uRv) Dense

(C) ◊A → ◊A wRv∧wRx → ∃u(vRu ∧ xRu) Convergent

Synergy User Manual and Tutorial

98

lxi

Temporal Logic

P "It has at some time been the case that …"
F "It will at some time be the case that …"
H "It has always been the case that …"

G "It will always be the case that …"

Pp ≡ ¬H¬p

Fp ≡ ¬G¬p

Gp→Fp "What will always be, will be"
G(p→q)→(Gp→Gq) "If p will always imply q, then if p will always be the case, so will q"
Fp→FFp "If it will be the case that p, it will be — in between — that it will be"

¬Fp→F¬Fp "If it will never be that p then it will be that it will never be that p"

p→HFp "What is, has always been going to be"
p→GPp "What is, will always have been"
H(p→q)→(Hp→Hq) "Whatever always follows from what always has been, always has been"

G(p→q)→(Gp→Gq) "Whatever always follows from what always will be, always will be"

RH: From a proof of p, derive a proof of Hp

RG: From a proof of p, derive a proof of Gp

F∃xp(x)→∃xFp(x) ("If there will be something that is p, then there is now something that will be

p")

Synergy User Manual and Tutorial

99

Spq "q has been true since a time when p was true"
Upq "q will be true until a time when p is true"

Pp ≡ Sp(p∨¬p)
Fp ≡ Up(p∨¬p)

Pp ≡ ∃n(n<0 & Fnp)

Fp ≡ ∃n(n>0 & Fnp)

Hp ≡ ∀n(n<0→Fnp)

Gp ≡ ∀n(n>0→Fnp)

Op ≡ Up(p&¬p)

Fp ≡ Op ∨ OFp

Pp is true at t if and only if p is true at some time t′ such that t′<t
Fp is true at t if and only if p is true at some time t′ such that t<t′

Hp is true at t if and only if p is true at all times t′ such that t′<t
Gp is true at t if and only if p is true at all times t′ such that t<t′

p is true at all times under all interpretations over any frame in F.

For any frame not in F, there is an interpretation which makes p false at some time.

Hp→Pp ∀t∃t′(t′<t) (unbounded in the past)

Synergy User Manual and Tutorial

100

Gp→Fp ∀t∃t′(t<t′) (unbounded in the future)
Fp→FFp ∀t,t′(t<t′ → ∃t″(t<t″<t′)) (dense ordering)

FFp→Fp ∀t,t′(∃t″(t<t″<t′) → t<t′) (transitive ordering)

FPp → PppFp ∀t,t′,t″((t<t″ & t′<t″) → (t<t′ t=t′ t′<t)) (linear in the past)

PFp → PppFp ∀t,t′,t″((t″<t & t″<t′) → (t<t′ t=t′ t′<t)) (linear in the future)

Kill(Brutus,Caesar,44BC)

Pp ∃t(t<now & p(t))

Fp ∃t(now<t & p(t))

Gp ∀t(t<now → p(t))

Hp ∀t(now<t → p(t))

Holds(Asleep(Mary),(1pm,6pm))
Occurs(Walk-to(John,Station),(1pm,1.15pm))

∀s,i,i′(Holds(s,i) & In(i′,i) → Holds(s,i′))

∀e,i,i′(Occurs(e,i) & In(i′,i) → ¬Occurs(e,i′))

John saw Mary in London on Tuesday.
Therefore, John saw Mary on Tuesday.

∃e(See(John,Mary,e) & Place(e,London) & Time(e,Tuesday)),

Therefore, ∃e(See(John,Mary,e) & Time(e,Tuesday)).

[lxii]

Synergy User Manual and Tutorial

101

Petri Net

Amdahl’s Law

Gene Amdahl, a computer architect, entrepreneur, former IBM employee and one of the
creators of the IBM System 360 architecture, devised this method in 1967 to determine
the maximum expected improvement to a system when only part of it has been improved.
He presented this as an argument against parallel processing. This law is similar to the
law of diminished returns, which states that as more input is applied, each additional
input unit will produce less additional output. Amdahl’s law states that a number of
functions or operations must be executed sequentially, decreasing a computer’s speed
when more processors are added. In other words, the number of tasks that must be
completed sequentially limits computational speedup. This causes a bottleneck in the
workflow, slowing the overall task. However as the size of a task increases the effect of
Amdahl’s law decreases. The speedup of a system is:

timprovemenwithouteperformanc

timprovemenwitheperformanc
speedup

timeimproved

timeunimproved

__

__

_

_
==

If you make an improvement that greatly increases performance (maybe 100 times or
more) in part of a computation but the overall improvement is only 25 percent, then the
upper limit for speedup S is:

333.1
25.000.1

00.1

_

_
=

−
==

timeimproved

timeunimproved
S

Note: The unimproved execution time is 1.00 = 100% because this example makes use of
the ratio between the two times, not the actual values. Assume that an unimproved
computation takes 4 seconds and the improved computation takes 3 seconds. The
equation is:

333.1
sec3

sec4

_

_
===

timeimproved

timeunimproved
S

If the improved computation is taken to be 100 percent performance, then by the
relationship above the unimproved computation has 75 percent performance with respect
to the improved.

Synergy User Manual and Tutorial

102

333.1
75

100

__

__
===

timprovemenwithouteperformanc

timprovemenwitheperformanc
S

If a computation is improved such that it affects a proportion Fp of the computation, then
the improvement will have a speedup S affecting Fp. The improved time for a
computation will be equal to the unimproved time multiplied by the sum of the

unaffected portion (1-Fp) and the speedup reduced affected portion (Fp÷S) of the task. To
find the improved execution time we use:

()

+−×=
S

F
Ftimeunimprovedtimeimproved

p

p1__

Continuing the formula above with an affected portion of 40 percent and a speedup of
2.66 times on this portion, we have:

() () 375.0415.06.04
66.2

4.0
4.014_ =×=××=

 +−×=timeimproved

This method states, assuming that the value for the speed of the unimproved computation
is 100 percent, the overall speedup for this computational improvement will be:

S

F
F

timeimproved

timeunimproved
S

p

p +−

==

)1(

1

_

_

Then plugging in the example proportional values:

33.1
75.0

1

66.2

4.0
)4.01(

1
==

+−
=S

Using time values instead of proportions, we have:

33.1
sec3

sec4

66.2

sec6.1
sec)6.1sec4(

sec4
==

+−
=S

Synergy User Manual and Tutorial

103

Amdahl’s law for parallelization states that the sequential fraction Fs of a task that cannot
be performed in parallel and the fraction Fp = (1-Fs) that can gives the following formula
for maximum speedup by Np processors:

p

s
s

N

F
F

S
−

+
=

1

1

As N approaches infinity, the maximal speedup approaches 1/Fs. As the (1-Fs)/Np value
becomes very small, the price paid for marginal performance increases. Assume that Fs =
0.06. Then Fp = 1-Fs = 0.94. For 4 processors:

3898.3
295.0

1

235.006.0

1

4

94.0
06.0

1

4

06.01
06.0

1
==

+
=

+
=

−
+

=S

The table below shows the run time, speedup, efficiency and cost for processors
Np={1,2,4,…,1024}, where Fs = 0.06 and Fp = 0.94. Notice that the speedup per
additional processor is much less as Np increases, causing greater cost and less efficiency.
The graphs show the effect on speedup (y-axis) with respect to Fs (x-axis) with increasing
Np.

Processors(Np) 1 2 4 8 16 32 64 128 256 512 1024

Run Time 1024.00 542.72 302.08 181.76 121.60 91.52 76.48 68.96 65.20 63.32 62.38

Speedup 1.0000 1.8868 3.3898 5.6338 8.4211 11.1888 13.3891 14.8492 15.7055 16.1718 16.4155

Efficiency 100.00% 94.34% 84.75% 70.42% 52.63% 34.97% 20.92% 11.60% 6.13% 3.16% 1.60%

Cost 1.00 1.06 1.18 1.42 1.90 2.86 4.78 8.62 16.30 31.66 62.38

0 0.01 0.02 0.03 0.04 0.05 0.06
3.2

3.4

3.6

3.8

4

3.39

1

F
1 F

4

0.060 F

0 0.01 0.02 0.03 0.04 0.05 0.06
8

10

12

14

16
16

8.421

1

F
1 F

16

0.060 F

0 0.01 0.02 0.03 0.04 0.05 0.06
10

20

30

40

50

60

70
64

13.389

1

F
1 F

64

0.060 F

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

300
256

15.706

1

F
1 F

256

0.060 F

0 0.01 0.02 0.03 0.04 0.05 0.06
0

200

400

600

800

1000

1200

1.024 10
3.

16.416

1

F
1 F

1024

0.060 F

Synergy User Manual and Tutorial

104

The graphs have values Np of 4, 16, 64, 256 and 1024. Notice that as the value Np
increases, the area under the curve decreases, meaning that the non-parallizable part of
the serial program has a greater effect and the degeneration occurs faster as Np increases.

Amdahl’s intention was to show “the continued validity of the single processor approach
and of the weaknesses of the multiple processor approach”. His paper proposed
arguments to support his proposal, such as:

• “The nature of this overhead appears to be sequential so that it is unlikely to be

amenable to parallel processing techniques.”

• “A fairly obvious conclusion which can be drawn at this point is that the effort

expended on achieving high parallel performance rates is wasted unless it is

accompanied by achievements in sequential processing rates of very nearly the

same magnitude.”

Gustafson’s Law

In 1988, John L. Gustafson proposed the notion that massively parallel processing was
beneficial because Amdahl’s law implies that the parallel part of the computation and the
number of processors is independent [lxiii]. He proposed a formula for a scaled speedup
based on an observation that in most real world computations “the problem size scales
with the number of processors”. His proposed formula is:

)1__(

)___(_

=+
×+

=
parallelfractionserialfraction

processorsofnumberparallelfractionserialfraction
S

spp

spsp

spps

pss

ss

pss

FNN

FNFN

FNNF

NFF

FF

NFF

×−+=

−+=

−+=

×−+
=

−+

×−+
=

)1(

)(

1

)1(

)1(

)1(

Synergy User Manual and Tutorial

105

where S is the speedup, the serial portion is Fs and Np is the number of processors.
Again, assume that Fs = 0.06. Then Fp = 1–F s = 0.94. For 4 processors:

82.318.0406.0)41(4)1(=−=×−+=×−+= spp FNNS

The table and graphs below show the same data as in Amdahl but using Gustafson’s law.

Processors(N) 1 2 4 8 16 32 64 128 256 512 1024

Run Time 1024.0000 527.8351 268.0628 135.0923 67.8146 33.9748 17.0043 8.5064 4.2543 2.1274 1.0638

Speedup 1.0000 1.9400 3.8200 7.5800 15.1000 30.1400 60.2200 120.3800 240.7000 481.3400 962.6200

Efficiency 100.00% 97.00% 95.50% 94.75% 94.38% 94.19% 94.09% 94.05% 94.02% 94.01% 94.01%

Cost 1.0000 1.0309 1.0471 1.0554 1.0596 1.0617 1.0628 1.0633 1.0636 1.0637 1.0638

Consider the following diagrams, which are similar to those in Gustafson’s paper:

Time = sA + pA/Np

sA

sA

Time = sA + pA = 1

pA/Np

Single Processor

N Processors

pA

0 0.01 0.02 0.03 0.04 0.05 0.06
61

62

63

64

65
65

61.16

64 1 F 64.()

0.060 F

0 0.01 0.02 0.03 0.04 0.05 0.06
240

245

250

255

260
256

240.7

256 1 256() F.

0.060 F
0 0.01 0.02 0.03 0.04 0.05 0.06

960

980

1000

1020

1040

1.024 10
3.

962.62

1024 1 1024() F.

0.060 F

0 0.01 0.02 0.03 0.04 0.05 0.06
15

15.2

15.4

15.6

15.8

16
16

15.1

16 1 16() F.

0.060 F

0 0.01 0.02 0.03 0.04 0.05 0.06
3.8

3.85

3.9

3.95

4
4

3.82

4 1 4() F.

0.060 F

Synergy User Manual and Tutorial

106

Under Gustafson’s proposal, increasing the number of processors has little affect on cost
or efficiency and an almost linear speedup, as shown in the graphs above. The problem
with this method of evaluating computational speedup is that the serial and parallel
programs perform different numbers of operations on the primary task because the task
for the parallel implementation is Np times larger than that of the serial. If the
parallelized operation were matrix multiplication on n2 matrices for ns = 10, there would
be 103 = 1000 multiplication and 1000 addition operations in the serial program. If you
scale up the problem for Np = 4 processors the multiplication operations must increase to
4000 and the matrix np size must increase to:

165874.110410004000 333 ≈×=×=

Because matrix multiplication is O(n3) complexity, increasing the size of the matrix, even
minimally, creates a much bigger job. An observation by Yuan Shi was proposed in [lxiv],
where an equivalence between Amdahl’s Law and Gustafson’s Law is explained. The
relationship is based on the adjustment to the serial fraction in Amdahl’s Law, call it FsA,
and the unadjusted serial fraction used in Gustafson’s Law, call it FsG, such that:

sG

psG
sA

F

NF
F

×−
+

=
)1(

1

1

As an example, consider a task that has serial fraction FsG = 0.05 with 1024 processors.
Amdahl’s Law would predict speedup S to be:

sG

Single Processor

Time = sG + pG = 1

NppG

sG

Time = sG +Np pG

N Processors pG

Synergy User Manual and Tutorial

107

635666.19
0509277.0

1

0009277.005.0

1

1024

95.0
05.0

1

1024

05.01
05.0

1

1

1

==
+

=

+
=

−
+

=
−

+
=

p

sG
sG

N

F
F

S

Gustafson’s Law predicts:

85.97215.51102405.010231024

05.0)10241(1024)1(

=−=×−=

×−+=×−+= spp FNNS

However when the serial fraction FsA is calculated from FsG using the equation above, we
have:

05-5.14E
19457

1

194561

1

05.0

8.972
1

1

05.0

1024)05.01(
1

1

)1(
1

1

==
+

=

+
=

×−
+

=
×−

+
=

sG

psG
sA

F

NF
F

We substitute FsA for FsG and solve:

85.972
03-1.0279E

1

04-9.7650E05-5.14E

1

1024

99994.0
05-5.14E

1

1024

05-5.14E1
05-5.14E

1

1

1

==
+

=

+
=

−
+

=
−

+
=

p

s
s

N

F
F

S

For this situation, the claim of equivalent results with Gustafson’s Law by obtaining FsA
from FsG, as defined above, and substituting FsA for FsG in Amdahl’s Law is true. The
table below shows that this is true for all number of processors, where Np = {1, 2, 4, 8,
…, 1024} and FsG = 0.05.

Synergy User Manual and Tutorial

108

Processors Np
1 2 4 8 16 32 64 128 256 512 1024

FsG 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

FsA 0.05 0.025641 0.012987 0.0065359 0.0032787 0.001642 0.0008217 0.000411 0.0002055 0.0001028 5.14E-05

Amdahl-FsG 1 1.9047619 3.4782609 5.9259259 9.1428571 12.54902 15.421687 17.414966 18.618182 19.284369 19.635666

Gustafson 1 1.95 3.85 7.65 15.25 30.45 60.85 121.65 243.25 486.45 972.85

Amdahl-FsA 1 1.95 3.85 7.65 15.25 30.45 60.85 121.65 243.25 486.45 972.85

The table below shows that this is also true for all FsG, where FsG = {0.01, 0.02, …, 0.90,
0.1, 0.2} and Np = 1024.

Processors Np 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024

FsG 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2

FsG 9.864E-06 1.993E-05 3.02E-05 4.069E-05 5.14E-05 6.233E-05 7.35E-05 8.491E-05 9.657E-05 0.0001085 0.0002441

Amdahl-FsG 91.184328 47.716682 32.313033 24.427481 19.635666 16.415518 14.102741 12.361178 11.002471 9.9128751 4.9805447

Gustafson 1013.77 1003.54 993.31 983.08 972.85 962.62 952.39 942.16 931.93 921.7 819.4

Amdahl-FsA 1013.77 1003.54 993.31 983.08 972.85 962.62 952.39 942.16 931.93 921.7 819.4

Performance Metrics

Performance metrics are basically measures of computer and/or network system behavior
over a given period of time. The four primary types of performance metrics:

• Latency

• Throughput

• Efficiency

• Availability

• Reliability

• Utilization

Latency is also called response time. It is a measure of the delay between the initial time
of a request for some service and the time that the service arrives, expressed in units of
elapsed time. The elapsed time between the completion of dialing a phone number and
the first ring, the time that a router holds a packet, and the time spent waiting for a Web
page to be displayed after a hyperlink is clicked are all latency metrics. It can be stated
as a statistical distribution. An example is a server that must acknowledge 99.9% of
client requests in one second or less.

Synergy User Manual and Tutorial

109

Throughput, also called capacity, is the rate that results arrive or the amount of work
done in a given time. It is measured in the quantity of units per time. Megabits per
second of data transmitted across a network, transactions completed per minute in a
transaction server, and gigabytes of data per second transferred across a system buss are
all throughput metrics. The theoretical maximum throughput is called bandwidth. The

bandwidth of a 400Mhz, 64-bit data bus is 25.6Gb/s (400Mhz × 64-bit) but the actual
throughput is less because of padding between data blocks and control protocols.

The ratio of usable throughput compared to the bandwidth is called efficiency. The
efficiency of a 400Mhz, 64-bit data bus, with a throughput of 20.48Gb/s, is 80%

(20.48Gb/s ÷ 25.6Gb/s). Goodput is the arrival rate of good data packets across a
computer network. If, on average, 920 packets arrive uncorrupted at the destination, the
goodput is said to be 92%.

Availability is the percentage of time that a system is available to provide service. If a
server is down for 15 minutes each day for maintenance, it has 98.96% availability

(1425min ÷ 1440min).

The reliability metric reports the mean time between failures (MTBF), which indicates
the average period that the system is usable. The mean time to repair (MTTR) is the
average time to recover from failures.

Utilization is the percentage of time that a component in the system is active. Utilization
is typically measured as a percentage. The capacity or maximum throughput of a system
is reached when the utilization of the busiest component is 100%. Many systems have a
utilization threshold because as utilization approaches 100%, system latency quickly
increases.

Performance metrics for parallel systems include the following:

• Runtime

• Speedup

• Efficiency

• Cost

• Scalability

The run time of a parallel system is elapsed time from the instance of execution of the
master or controller program until the last program in the parallel system terminates. Ts
usually denotes the serial or single processor run time of a task is and Tp usually denotes
the parallel run time.

Synergy User Manual and Tutorial

110

Speedup, usually denoted by S, is the ratio calculated by dividing the serial run time of a
particular task by the parallel run time for the same task:

p

s

T

T
S =

As an example, if two size n matrices are to be multiplied, the operation has complexity

Θ(n3). Assuming that the run time for the operation a single processor is n3, the
theoretical speedup, ignoring parallel system overhead, for 2 processors is:

2

2

,
2

,
3

3

2

1

3

2

3

1 =====
n

n

T

T
S

n
TnT

Be careful not to make the following mistake for parallel time and speedup:

8

8

,
82

,
3

333

3 ====

==
n

n

T

T
S

nn
TnT

p

s
ps

This assumes a change in the overall problem size, which is false because matrix
multiplication is n3 multiplications and n3 additions, regardless of how many processors
are used.

Efficiency, usually denoted as E, is the ratio calculated by dividing the speedup S by the
number of processors Np, which measures the percentage of time that a processor is
working on the primary task. For the matrix multiplication example the efficiency is:

%1001
2

2
====

pN

S
E

Parallel system overhead To can decrease system efficiency. Parallel system overhead
consists of all the necessary operations to manage and setup the parallel system, divide
the task among the processors, transmit the task to the worker processes, collect the
results from the processes and compile the results. It may include pieces of the sequential
program that cannot be parallelized T1-p. Hence a more realistic formula for the run time
with n processors Tn , where Tc is the time spent on computation of the task, is:

Synergy User Manual and Tutorial

111

pocn TTTT −++= 1

Assume that the following values are valid for the matrix multiplication above:

• Sequential run time T1 120sec

• Parallel computation time Tc 60sec

• Parallel overhead To 20sec

• Assume no non-parallizable code T1-p 0sec

Then speedup would be

%1505.1
sec80

sec120
sec,80sec0sec20sec60sec,60 121 ====++=++== − STTTTT poc

This is somewhat less than the previous speedup.

The cost C of a parallel system is calculated by multiplying the parallel run Tn time and
the number of processors Np divided by the sequential run time T1:

1T

NT
C

pn ×=

The values in the example above, ignoring overhead, would be.

1
sec120

sec120

sec120

2sec60

1

==
×

=
×

=
T

NT
C

pn

This equation is shows that the parallel system is optimal because the increase in speed is
proportional with the number of processors added. Typically costs are not optimal.
Considering the overhead in the example above, we have:

333.1
sec120

sec160

sec120

2sec80

1

==
×

=
×

=
T

NT
C

pn .

Timing Models

Synergy User Manual and Tutorial

112

Gathering System Performance Data

Gathering Network Performance Data

Optimal Load balancing

Load balancing is the efficient distribution of the workload over all available processors,
keeping all processors busy until the task is complete. Not all machines will have the
same computational capacity. Some machines may have lower processor speeds or other
tasks that consume system resources. The idea is to shift more work to processors that
can accommodate it. Optimization is the modification of a system to improve
performance and efficiency. Optimal load balancing occurs when the latency of requests
is minimized, computation is distributed equally across all processors, system throughput
is maximized, and the system completes all tasks in the least possible time. An
absolutely optimal system is rare and can be difficult to produce. Optimization usually
involves compromise. Performance or efficiency in one part of a system may have to be
sacrificed to optimize another part.

Successful optimization requires the development of sound algorithms and a functional
prototype. Challenges to load balancing include problems with timing, communication,
synchronization, and iterative tasks and branching that may depend conditions elsewhere
in the parallel system. If tasks in a parallel system have differing execution times, one or
more processors will have to wait for the longest executing task to finish.
Communication and synchronization will occur over some communication channel, such
as the system buss or a network. Systems that require an abundance of communication
may cause a bottleneck in these channels. If the channel is shared between multiple
processes, competition for the resource may cause contention in heavily loaded channels.
Loops and branches can easily lead to non-deterministic program behavior if measures
are not employed to prevent it.

There are two classifications of load balancing: static and dynamic. Static load balancing
uses statistics, based on the ability of each processor’s ability to perform, to share the
burden of the workload. Dynamic load balancing shares work by dynamically averaging
job size based on the performance of participating processors. Dynamic load balancing
requires more communication synchronization between processes, which consumes
communication time. However, the tradeoff is that dynamic load balancing can handle
unexpected delays when jobs take unreasonable amounts of time, where static load
balancing cannot. If a task is taking longer than anticipated, some work can be sent to
other processes. The extra communication may decrease throughput but the processes
will be kept busy. It is also important to mention that load balancing should reduce the

Synergy User Manual and Tutorial

113

overall run time for the system. If it takes less time to complete the task without it, we
should forgo load balancing.lxv

Synergy User Manual and Tutorial

114

About Synergy

Blue text: Copied and pasted from Getting Started by Dr. Shi
Red text: Copied and pasted from syng_man.ps by Dr. Shi

Introduction to The Synergy Project

What is Synergy?

Synergy is a parallel computing system using a Stateless Parallel Processing (SPP)
principle. It is a simplified prototype implementation of a Stateless Machine (SLM). It
lacks backbone fault tolerance and stateful process fault tolerance. It is also known to
have an inefficient tuple matching engine in comparison to the full implementation of
SLM.

SPP is based on coarse-grain dataflow processing. A full SLM implementation will
offer, in addition to all benefits that Synergy affords, a more efficient tuple matching
engine and a non-stop computing platform with total fault tolerance for stateful processes
and for the backbone. An SLM can be considered a higher form of Symmetric
MultiProcessor (SMP).

Functionally, Synergy can be thought of as an equivalent to PVM, Linda or MPI/MPICH.

Synergy uses passive objects for inter-process(or) communication. It offers
programming ease, load balancing and fault tolerance benefits. The application-
programming interface (API) is a small set of operators defined on the supported object
types, such as tuple space, file and database. Synergy programs use a conventional open-
manipulate-close sequence for each passive object. Each Synergy program is
individually compiled using a conventional compiler and a Synergy Language Injection
Library (LIL). A parallel application is synthesized through a configuration specification
(CSL) and an automatic processor-binding algorithm. Synergy runtime system can
execute multiple parallel applications on the same cluster at the same time.

Synergy API blends well into the conventional sequential programs. It is particularly
helpful for reengineering legacy applications. It even allows parallel processing of mixed
PVM and MPI programs.

Synergy User Manual and Tutorial

115

Synergy and SPP

Synergy is a prototype implementation of a StateLess Machine (SLM). It uses a Passive
Object-Flow Programming (POFP) method to offer programming ease, process fault
Tolerance and high efficiency using cluster of networked computers.

In principle, a Stateless Parallel Processing (SPP) system requires total location
transparency for all processes (running programs). This affords three important non-
functional features: ease of programming, fault tolerance and load balancing.

In programming, this means that location (host address and port) dependent IPC
primitives are NOT allowed. Consequently, a special asynchronous IPC layer (of Passive
Objects) is used for inter-process communication and synchronization. The SPP runtime
system can automatically determine the optimal process-to-processor binding during the
execution of a parallel application. This additional IPC layer does carry some overheads
in comparison to direct IPC systems such as MPI/PVM. In return, it gives three critical
benefits: programming ease, load balancing and fault tolerance support at the architecture
level.

Why Synergy?

First, one hidden fact that has not been mentioned in any high performance
multiprocessor's literature is that the use of multiple processors for a single application
necessarily reduces its availability if any processor failure can halt the entire application.
The current state of art in parallel processing is still under the shadow of this gloomy fact.
SPP offers an approach that promises breakthroughs in both high performance and high
availability using multi-processors. Synergy is the first prototype designed to explore
architectural flaws and to validate the claims of SPP.

Second, technically, separation of functional programming from process coordination and
resource management functions can ease parallel programming while maintaining high
performance and availability. Although many believe that explicit manipulation of
processes and data objects can produce highly optimized parallel codes, we believe ease
of programming, high performance and high availability are of a higher importance in
making industrial strength parallel applications using multiprocessors.

Synergy User Manual and Tutorial

116

Synergy Philosophy

Facilitating the best use of computing and networking resources for each application is
the key philosophy in Synergy. We advocate competitive resource sharing as opposed to
``cycle stealing.'' The tactic is to reduce processing time for each application. Multiple
running applications would fully exploit system resources. The realization of the
objectives, however, requires both quantitative analysis and highly efficient tools.

It is inevitable that parallel programming and debugging will be more time consuming
than single thread processing regardless how well the application programming interface
(API) is designed. The illusive parallel processing results taught us that we must have
quantitatively convincing reasons to processing an application in parallel before
committing to the potential expenses (programming, debugging and future maintenance.)

We use Timing Models to evaluate the potential speedups of a parallel program using
different processors and networking devices [13]. Timing models capture the orders of
timing costs for computing, communication, disk I/O and synchronization requirements.
We can quantitatively examine an application's speedup potential under various processor
and networking assumptions. The analysis results delineate the limit of hopes. When
applied to practice, timing models provide guidelines for processing grain selection and
experiment design.

Efficiency analysis showed that effective parallel processing should follow an
incremental coarse-to-fine grain refinement method. Processors can be added only if
there are unexplored parallelism, processors are available and the network is capable of
carrying the anticipated load. Hard-wiring programs to processors will only be efficient
for a few special applications with restricted input at the expense of programming
difficulties.

To improve performance, we took an application-oriented approach in the tool design.
Unlike conventional compilers and operating systems projects, we build tools to
customize a given processing environment for a given application. This customization
defines a new infrastructure among the pertinent compilers, operating systems and the
application for effective resource exploitation. Simultaneous execution of multiple
parallel applications permits exploiting available resources for all users. This makes the
networked processors a fairly real ``virtual supercomputer.''

An important advantage of the Synergy compiler-operating system-application
infrastructure is the higher level portability over existing systems. It allows written
parallel programs to adapt into any programming, processor and networking technologies
without compromising performance.

Synergy User Manual and Tutorial

117

An important lesson we learned was that mixing parallel processing, resource
management and functional programming tools in one language made tool automation
and parallel programming unnecessarily difficult. This is especially true for parallel
processors employing high performance uni-processors.

Building timing models before parallel programming can determine the worthiness of the
undertaking in the target multiprocessor environment and prevent costly design mistakes.
The analysis can also provide guidelines for parallelism grain size selection and
experiment design (http://joda.cis.temple.edu/~shi/super96/timing/timing.html)

Except for server programs, all parallel processing applications can be represented by a
coarse grain dataflow graph (CGDG). In CGDG, each node is either a repetition node or
a non-repetition node. A repetition node contains either an iterative or recursive process.
The edges represent data dependencies. It should be fairly obvious that CGDG must be
acyclic.

CGDG fully exhibits potential effective (coarse grain) parallelism for a given application.
For example, the SIMD parallelism is only possible for a repetition node. The MIMD
parallelism is possible for any 1-K branch in CGDG. Pipelines exist along all
sequentially dependent paths provided that there are repetitive input data feeds. The
actual processor assignment determines the deliverable parallelism.

Any repetition node can be processed in a coarse grain SIMD (or scatter-and-gather)
fashion. The implementation of a repetition node is to have a master and a worker
program connected via two tuple space objects. The master is responsible for distributing
the work tuples and collecting results. The worker is responsible for computing the
results from a given input and delivering the results.

For all other components in the graph, one can use tuple space or pipe. The use of

file and database (yet to be implemented) objects is defined by the application.

Following the above description results in a static IPC graph using passive objects. The
programmer's job is to compose parallel programs communicating with these objects.

History

Synergy V3.0 is an enhancement to Synergy V2.0 (released in early 1994). Earlier
versions of the same system appeared in the literature under the names of MT (1989),
ZEUS (1986), Configurator (1982) and Synergy V1.0 (1992) respectively.

Synergy User Manual and Tutorial

118

Major Components and Inner Workings of

Synergy

Technically, the Synergy system is an automatic client/server software generation system
that can form an effective parallel processor for each application using multiple
distributed Unix or Linux computers. This parallel processor is specifically engineered to
process programs inter-connected in an application dependent IPC (Inter-Program
Communication/ Synchronization) graph using industry standard compilers, operating
systems and communication protocols. This IPC graph exhibits application dependent
coarse grain SIMD (Single Instruction Multiple Data), MIMD (Multiple Instruction
Multiple Data) and pipeline parallelisms.

Synergy V3.0 supports three passive data objects for program-to-program communication
and synchronization:

1. Tuple space (a FIFO ordered tuple data manager)
2. Pipe (a generic location independent indirect message queue)
3. File (a location transparent sequential file)

A passive object is any structured data repository permitting no object creation functions.
All commonly known large data objects, such as databases, knowledge bases, hashed
files, and ISAM files, can be passive objects provided the object creating operators are
absent. Passive objects confine dynamic dataflows into a static IPC graph for any
parallel application. This is the basis for automatic customization.

POFP uses a simple open-manipulate-close sequence for each passive object. An one-
dimensional Coarse-To-Fine (CTF) decomposition method (see Adaptable Parallel
Application Development section for details) can produce designs of modular parallel
programs using passive objects. A global view of the connected parallel programs reveals
application dependent coarse grain SIMD, MIMD and pipeline potentials. Processing
grain adjustments are done via the work distribution programs (usually called Masters).
These adjustments can be made without changing codes. All parallel programs can be
developed and compiled independently.

What are in Synergy? (Synergy Kernel with Explanation)

The first important ingredient in Synergy is the confinement of inter-program
communication and synchronization (IPC) mechanisms. They convert dynamic

Synergy User Manual and Tutorial

119

application dataflows to a static, bipartite IPC graph. In Synergy, this graph is used to
automate process coordination and resource management. In other words, Synergy V3.0
uses this static IPC graph to automatically map parallel programs onto set of networked
computers that forms a virtual multiprocessor. In the full SLM implementation, this
static IPC graph will be implemented via a self-healing backbone.

Synergy v3.0 contains the following service components:

• A language injection library (LIL). This is the API programmers use to compose
parallel programs. It contains operators defined on supported passive objects,
such as tuple space, file, pipe or database.

• Two memory resident service daemons (PMD and CID). These daemons resolve
network references and are responsible for remote process/object execution and
management.

• Two dynamic object daemons (TSH and FAH). These daemons are launched
before every parallel application begins and are removed after the application
terminates. They implement the defined semantics of LIL operators.

• A customized Distributed Application Controller (DAC). This program actually
synthesizes a multiprocessor application. It conducts processor binding and
records relevant information about all processes involved in the application until
completion. DAC represents a customized virtual multiprocessor for each
application.

• Synergy shell: (prun and pcheck). These programs are Synergy runtime user
interface.

o prun launches a parallel application
o pcheck is a runtime monitor for managing multiple parallel applications

and processes

ADD PRUN AND LIL INFO HERE

Program ``pcheck'' functions analogously as the ``ps'' command in Unix. It monitors
parallel applications and keeps track of parallel processes of each application. Pcheck
also allows killing running processes or applications if necessary.

To make remote processors listening to personal commands, there are two light weight
utility daemons: the Command Interpreter Daemon (cid) and the Port Mapper Daemon
(pmd). Cid interprets a limited set of process control commands from the network for
each user account. In other words, parallel users on the same processor need different
cid's. Pmd (the peer leader) provides a "yellow page" service for locating local cid's.
Pmd is automatically started by any cid and is transparent to all users.

Synergy User Manual and Tutorial

120

FDD is a Fault Detection Daemon. It is activated by an option in the prun command to
detect worker process failures at runtime.

Synergy V3.0 requires no root privileged processes. All parallel processes assume
respective user security and resource restrictions defined at account creation. Parallel use
of multiple computers imposes no additional security threat to the existing systems.
Theoretically, there should be one object daemon for each supported object type. For the
three supported types: tuple space, pipe and files, we saved the pipe daemon by
implementing it directly in LIL. Thus, Synergy V3.0 has only two object daemons: the
Tuple Space Handler (tsh) and the File Access Handler (fah). The object daemons, when
activated, talk to parallel programs via the LIL operators under the user defined identity
(via CSL). They are potentially resource hungry. However they only "live" on the
computers where they are needed and permitted.

Optimal processor assignment is theoretically complex. Synergy's automatic processor
binding algorithm is extremely simple: unless specifically designated, it binds all tuple
space objects, one master and one worker to a single processor. Other processors run the
worker-type (with repeatable logic) processes. Since network is the bottleneck, this
binding algorithm minimizes network traffic thus promising good performance for most
applications using the current tuple matching engine. The full implementation of SLM
will have a distributed tuple matching engine that promises to fulfill a wider range of
performance requirements.

Fault tolerance is a natural benefit of the SPP design. Processor failures discovered
before a run are automatically isolated. Worker processor failures during a parallel
execution is treated in V3.0 by a "tuple shadowing" technique. Synergy V3.0 can
automatically recover the lost data from a lost worker with little overhead. This feature
brings the availability of a multiprocessor application to be equal to that of a single
processor and is completely transparent to application programs.

Synergy provides the basis for automatic load balancing. However, optimal load
balancing requires adjusting tuple sizes. Tuple size adjustments can adapt guided self-
scheduling [1], factoring [2] or fixed chunking using the theory of optimal granule size
for load balancing [3].

Synergy V3.0 runs on clusters of workstations. This evaluation copy allows unlimited
processors across multiple file systems (*requires one binary installation per file system).

Synergy User Manual and Tutorial

121

Comparisons with Other Systems

Synergy vs. PVM/MPI

PVM/MPI is a direct message passing system [5,6] that requires inter-process
communication be carried out based on process task id's. This requirement forces an
extra user-programming layer if fault tolerance and load balancing are desired. This is
because for load balancing and fault tolerance, working data cannot be "hard wired" to
specific processors. An "anonymous" data item can only be supplied using an additional
data management layer providing a tuple space-like interface. In this sense, we consider
PVM/MPI a lower level parallel API as compared to Linda and Synergy.

Fault tolerant and load balanced parallel programs typically require more inter-process
communication than direct message passing since they refresh their states frequently in
order to expose more “stateless moments” – critical to load balance and fault tolerance.
This is a tradeoff that users must make before adapting the Synergy parallel programming
platform.

Synergy vs. Linda

The original Linda implementation [4] uses a virtual global tuple space implemented
using a compile time analysis method. The main advantage of the Linda method is the
potential to reduce communication overhead. It was believed that many tuple access
patterns could be un-raveled into single lines of communication. Thus the compiler can
build the machine dependent codes directly without going through an intermediate
runtime daemon that would potentially double the communication latency of each tuple
transmission. However, experiments indicate that majority applications do not have
static tuple access patterns that a compiler can easily discern. As a result, increased
communication overhead is inevitable.

The compile time tuple binding method is also detrimental to fault tolerance and load
balancing.

Another problem in the Linda design is the limited scalability. Composing all parallel
programs in one file and compiled by a single compiler makes programming
unnecessarily complex and is impractical to large-scale applications. It also presents
difficulties for mixed language processing.

Synergy User Manual and Tutorial

122

In comparison, Synergy uses dynamic tuple binding at the expense of increased
communication overhead by using dynamic tuple space daemons. In the full SLM
implementation, this overhead will be reduced by a distributed tuple matching engine.
Practical computational experiments indicate that synchronization overhead (due to load
imbalance) logged more time than communication. Thus Synergy's load balancing
advantage can be used to offset its increased communication overhead.

Parallel Programming and Processing in Synergy

A parallel programmer must use the passive objects for communication and
synchronization purposes. These operations are provided via the language injection
library (LIL). LIL is linked to source programs at compilation time to generate hostless
binaries that can run on any binary compatible platforms.

After making the parallel binaries the interconnection of parallel programs (IPC graph)
should be specified in CSL (Configuration Specification Language). Program ``prun''
starts a parallel application. Prun calls CONF to process the IPC graph and to complete
the program/object-to-processor assignments automatically or as specified. It then
activates DAC to start appropriate object daemons and remote processes (via remote
cid's). It preserves the process dependencies until all processes are terminated.

Building parallel applications using Synergy requires the following steps:

1. Parallel program definitions. This requires, preferably, establishing timing models
for a given application. Timing model analysis provides decomposition
guidelines. Parallel programs and passive objects are defined using these
guidelines.

2. Individual program composition using passive objects.
3. Individual program compilation. This makes hostless binaries by compiling the

source programs with the Synergy object library (LIL). It may also include
moving the binaries to the $HOME/bin directory when appropriate.

4. Application synthesis. This requires a specification of program-to-program
communication and synchronization graph (in CSL). When needed, user preferred
program-to-processor bindings are to be specified as well.

5. Run (prun). At this time the program synthesis information is mapped on to a
selected processor pool. Dynamic IPC patterns are generated (by CONF) to guide
the behavior of remote processes (via DAC and remote cid's). Object daemons are
started and remote processes are activated (via DAC and remote cid's).

6. Monitor and control (pcheck).

Synergy User Manual and Tutorial

123

Load Balancing and Performance Optimization

Fault Tolerance

Synergy User Manual and Tutorial

124

Installing and Configuring Synergy

Red text: Copied and pasted from syng_man.ps by Dr. Shi
Gray text: Copied and pasted from a document by Dr. Shi

Basic Requirements

In addition to installing Synergy V3.0 on each computer cluster, there are four
requirements for each ``parallel'' account:

1. An active SNG_PATH symbol definition pointing to the directory where Synergy
V3.0 is installed. It is usually /usr/local/synergy.

2. An active command search path ($SNG_PATH/bin) pointing to the directory
holding the Synergy binaries.

3. A local host file ($HOME/.sng_hosts). Note that this file is only necessary for a
host to be used as an application submission console.

4. An active personal command interpreter (cid) running in the background. Note
that the destination of future parallel process's graphic display should be defined
before starting cid.

Since the local host file is used each time an application is started, it needs to reflect a)
all accessible processors; and b) selected hosts for the current application.

Unpacking

To uncompress, at Unix prompt, type
 % uncompress synergy-3.0.tar.Z
To untar,
 % tar -xvf synergy-3.0.tar

A directory called "synergy" will be created and all files
unpacked under this directory.

Compiling

Synergy User Manual and Tutorial

125

To compile, change to the synergy directory and type
 % make

The current version has been tested on these platforms:
 - SUN 3/4, SunOs
 - IBM RS6000, AIX
 - DEC Alpha, OSF/1
 - DEC ULTRIX
 - Silicon Graphics, SGI
 - HP, HP-UX
 - CDC cyber, EP/IX

The makefile will try to detect the operating system and build binaries, libraries and
sample applications. You may need to edit the makefile if your system requires special
flags, and/or if your include/library path is nonstandard. Check the makefile for detail.

Configuring the Synergy Environment

After the installation procedure is complete, some minor changes must be made to the
computers environment to access the Synergy system. When using a UNIX/Linux
system we enter commands in a command-line environment called a shell. This shell
must be configured to recognize the Synergy system. The two most used shells are C
Shell (csh) and Bourne Again Shell (bash). Examples of configuration or profile files
will be shown below for csh and bash. Because these files are hidden, you must type:

 ls –a

and press the enter key at the terminal command prompt to view them.

To configure csh, you must edit the “.cshrc” file in your home directory by adding the
line:

setenv SNG_PATH synergy_directory

where synergy_directory is the directory containing all the binary files and the
Synergy object library. Next, add the Synergy binary directory to the path definition by
typing:

 set path=($SNG_PATH/bin $path)

Synergy User Manual and Tutorial

126

at the command line and pressing enter. It is important to add $SNG_PATH/bin before

$path, since “prun” may be overloaded in some operating systems (such as SunOS 5.9).
To activate the new settings enter:

 source .cshrc

at the command prompt.

An example of a “.cshrc” file after the settings have been changed, with the changes in
bold, for the SunOS is:

#ident "@(#)local.cshrc 1.2 00/05/01 SMI"
umask 077
set path=(/usr/users/shi/synergy/bin /opt/SUNWspro/bin /bin /usr/bin /usr/ucb
/etc ~)
if (-d ~/bin) then
 set path=($path ~/bin)
endif
set path=($path .)

if ($?prompt) then
 set history=32
endif

set prompt="[%n@%m %c]%#"

Initialize new variables
setenv LD_LIBRARY_PATH ""
setenv MANPATH "/opt/SUNWspro/man"

Adding the SUN Companion CD Software, including GCC 2.95
set path=($path /opt/sfw/bin /opt/sfw/sparc-sun-solaris2.9/bin /usr/local/bin
)
setenv LD_LIBRARY_PATH "${LD_LIBRARY_PATH}:/opt/sfw/lib:/usr/local/lib"
setenv MANPATH "/opt/sfw/man:/usr/local/man:${MANPATH}"

Adding Usr-Local-Bin
set path=($path /usr/local/bin)
setenv LD_LIBRARY_PATH "${LD_LIBRARY_PATH}:/usr/local/lib"
setenv MANPATH "/usr/local/man:${MANPATH}"

Usr-Sfw
set path=($path /usr/sfw/bin)
setenv LD_LIBRARY_PATH "${LD_LIBRARY_PATH}:/usr/lib:/usr/sfw/lib"
setenv MANPATH "${MANPATH}:/usr/man:/usr/sfw/man"

DT Window Manager
set path=($path /usr/dt/bin)
#setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/usr/dt/lib
setenv MANPATH "${MANPATH}:/usr/dt/man"

GNOME

Synergy User Manual and Tutorial

127

set path=($path /usr/share/gnome)
setenv LD_LIBRARY_PATH "${LD_LIBRARY_PATH}:/usr/share/lib"
setenv MANPATH "${MANPATH}:/usr/share/man"
setenv SNG_PATH /usr/users/shi/synergy

SBIN
set path=($path /sbin /usr/sbin)

An example “.cshrc” file for Linux OS would be:

set path = (~ ~/bin /usr/java/j2sdk_nb/j2sdk1.4.2/bin $path \
 /usr/local/X11R6/bin /usr/local/bin /usr/bin /usr/users/shi/synergy/bin
.)

set noclobber
limit coredumpsize 0

aliases for all shells

#alias cd 'cd \!*;set prompt="`hostname`:`pwd`>"'
alias pwd 'echo $cwd'
alias edt 'textedit -fn screen.b.14'

set history = 1000
set savehist = 400
set ignoreeof
set prompt="%m:%~>"

alias help man
alias key 'man -k'

setenv EDITOR 'pico -t'
setenv MANPATH /usr/man:/usr/local/man:/usr/share/man
setenv WWW_HOME http://www.cis.temple.edu
setenv NNTPSERVER netnews.temple.edu
setenv SNG_PATH /usr/users/shi/synergy
#source ~/.aliases

auto goto client
["$tty" != ""] && [`hostname` = 'lucas'] && exec gotoclient

To configure bash you must edit the “.bash_profile” file by adding the lines:

SNG_PATH = synergy_directory

export SNG_PATH

where synergy_directory is the directory containing all the binary files and the
Synergy object library and add the following entry to the path:

/usr/users/shi/synergy/bin:

Synergy User Manual and Tutorial

128

To activate the new settings enter:

 source .bash_profile

at the command prompt.

Below is an example of the “.bash_profile” file for the Linux OS.

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=/usr/users/shi/synergy/bin:/usr/java/j2sdk_nb/j2sdk1.4.2/bin:$PATH:$HOME/bin

SNG_PATH = usr/users/shi/synergy

export PATH
export SNG_PATH
unset USERNAME

auto goto client
["$TERM" != "dumb"] && [`hostname` = 'lucas'] && exec gotoclient

Activating a Processor Pool

To activate your personal parallel processors, you will need to start one "cid" one

each of the host either manually or by some shell script at least once.

In addition, if you have special remote display requirements, you need to setup your
display characteristics BEFORE starting cid. For example you may want to monitor a
simulator running on many hosts and "steer" the program as it goes.

In this case, you will need to open as many windows as the number of hosts you want to
monitor and telnet (rlogin) to these hosts. Then you need to start a cid in each of these
hosts after you designate your display host. Cid has memories. It will send the local
display to the designated host as by the "setenv DISPLAY" command.

To start cid enter:

Synergy User Manual and Tutorial

129

 %cid &

Cid will try to connect to another daemon named "pmd". If it could not contact the peer
leader in three times, it will start the peer leader automatically.

To check for the total processor accessibility at any host, enter:
 %cds

This command checks host status for all SELECTED entries in your host file.

Note that you DO NOT have to re-start cid on the de-selected host if you want to re-
select them if a cid is already running, unless you want to change the display setup.

Synergy User Manual and Tutorial

130

Using Synergy

The Synergy System

Using Synergy’s Tuple Space Objects

Using Synergy’s Pipe Objects

Using Synergy’s File Objects

Compiling Synergy Applications

Running Synergy Applications

Debugging Synergy Applications

Synergy User Manual and Tutorial

131

Tuple Space Object Programming

A Simple Application – Hello Synergy!

The first example given in most introductory computer programming books is the “Hello
World!” program. To get started with Synergy programming, the “Hello Synergy!”
program will be the first example. The master program (tupleHello1Master.c) simply
opens a tuple space, puts the message in the tuple space and terminates. The worker
programs (tupleHello1Worker.c) open the tuple space, read the message from the tuple
space, display the message and terminate. The following example programs can be found
in the example01 directory.

The following is the tuple space “Hello Synergy!” master program:

#include <stdio.h>
#include <sys/resource.h>

main(){
 int tplength; // Length of ts entry
 int status; // Return status for tuple operations
 int P; // Number of processors
 int tsd; // Problem tuple space identifier
 char host[128]; // Host machine name
 char tpname[20]; // Identifier of ts entry

 // Message sent to workers
 char sendMsg[50] = "Hello Synergy!\0";

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Master: Opening tuple space\n");
 // Open problem tuple space
 tsd = cnf_open("problem",0);
 printf("Master: Tuple space open complete\n");

 // Get number of processors
 P = cnf_getP();
 printf("Master: Processors %d\n", P);

 // Send 'Hello Synergy!' to problem tuple space
 // Set length of send entry
 tplength = sizeof(sendMsg);
 // Set name of entry to host
 strcpy(tpname, host);
 printf("Master: Putting '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put entry in tuple space

Synergy User Manual and Tutorial

132

 status = cnf_tsput(tsd, tpname, sendMsg, tplength);
 printf("Master: Put '%s' complete\n", sendMsg);
 // Sleep 1 second
 sleep(1);

 // Terminate program
 printf("Master: Terminated\n");
 cnf_term();
}

The following is the tuple space “Hello Synergy!” worker program:

#include <stdio.h>
#include <sys/resource.h>

main(){
 int tsd; // Problem tuple space identifier
 int status; // Return status for tuple operations
 int tplength; // Length of ts entry
 char host[128]; // Host machine name
 char tpname[20]; // Identifier of ts entry
 char recdMsg[50]; // Message received from master

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple space
 printf("Worker: Opening tuple space\n");
 // Open problem tuple space
 tsd = cnf_open("problem",0);
 printf("Worker: Tuple space open complete\n");

 // Set name to any
 strcpy(tpname,"*");
 // Read problem from problen tuple space
 tplength = cnf_tsread(tsd, tpname, recdMsg, 0);
 printf("Worker: Taking item (%s)\n", tpname);

 // Normal receive
 if (tplength > 0){
 printf("Worker: Took message: %s from %s\n",
 recdMsg, tpname);
 }

 // Terminate program
 printf("Worker: Terminated\n");
 cnf_term();
}

Before the master and worker programs can execute these programs, a Command
Specification Language (csl) file must be created. It would be much more convenient to
use a makefile to compile the programs. Examples of both are below.

Synergy User Manual and Tutorial

133

The csl file the programs is:

configuration: tupleHello1;

m: master = tupleHello1Master
 (factor = 1
 threshold = 1
 debug = 0
)
 -> f: problem
 (type = TS)
 -> m: worker = tupleHello1Worker
 (type = slave)
 -> f: result
 (type = TS)
 -> m: master;

The makefile for the programs is:

CFLAGS = -O1
OBJS = -L$(SNG_PATH)/obj -lsng -lnsl -lsocket

all : nxdr copy

nxdr : master1 worker1

master1 : tupleHello1Master.c
 gcc $(CFLAGS) -o tupleHello1Master tupleHello1Master.c $(OBJS)

worker1 : tupleHello1Worker.c
 gcc $(CFLAGS) -o tupleHello1Worker tupleHello1Worker.c $(OBJS)

copy : tupleHello1Master tupleHello1Worker
 cp tupleHello1Master $(HOME)/bin
 cp tupleHello1Worker $(HOME)/bin

To run the “Hello Synergy!” distributed application:

1. Make the executables by typing “make” and pressing the enter key.
2. Run the application by typing “prun tupleHello1” and pressing the enter key.

The screen output for the master terminal should resemble:

[c615111@owin ~/fpc01]>prun tupleHello1
== Checking Processor Pool:
++ Benchmark (186) ++ (owin) ready.
== Done.
== Parallel Application Console: (owin)
== CONFiguring: (tupleHello1.csl)
== Default directory: (/usr/classes/cis6151/c615111/fpc01)
++ Automatic program assignment: (worker)->(owin)

Synergy User Manual and Tutorial

134

++ Automatic program assignment: (master)->(owin)
++ Automatic object assignment: (problem)->(owin) pred(1) succ(1)
++ Automatic object assignment: (result)->(owin) pred(1) succ(1)
== Done.
== Starting Distributed Application Controller ...
Verifying process [|(c615111)|*/tupleHello1Master
CID verify ****'d process (bin/tupleHello1Master)
Verifying process [|(c615111)|*/tupleHello1Worker
CID verify ****'d process (bin/tupleHello1Worker)
** (tupleHello1.prcd) verified, all components executable.
CID starting object (result)
CID starting object (problem)
CID starting program. path (bin/tupleHello1Master)
Master: Opening tuple space
CID starting program. path (bin/tupleHello1Worker)
Master: Tuple space open complete
Master: Processors 1
Master: Putting 'Hello Synergy!' Length 50 Name owin
Master: Put 'Hello Synergy!' complete
Worker: Opening tuple space
** (tupleHello1.prcd) started.
Worker: Tuple space open complete
Worker: Taking item (owin)
Worker: Took message: Hello Synergy! from owin
Worker: Terminated
CID. subp(27144) terminated
Setup exit status for (27144)
Master: Terminated
CID. subp(27143) terminated
Setup exit status for (27143)
CID. subp(27141) terminated
Setup exit status for (27141)
== (tupleHello1) completed. Elapsed [1] Seconds.
CID. subp(27142) terminated
Setup exit status for (27142)
[c615111@owin ~/fpc01]>

The output for the worker terminal should resemble:

CID verify ****'d process (bin/tupleHello1Worker)
CID starting program. path (bin/tupleHello1Worker)
Worker: Opening tuple space
Worker: Tuple space open complete
Worker: Taking item (owin)
Worker: Took message: Hello Synergy! from owin
Worker: Terminated
CID. subp(21015) terminated
Setup exit status for (21015)

The output shows Synergy’s distributed application initialization screen output, the
execution screen output of the master and worker programs, and termination screen
output of both programs and the distributed application.

Synergy User Manual and Tutorial

135

Synergy User Manual and Tutorial

136

Sending and Receiving Data

Hello Workers!—Hello Master!!!

In this example application, the master (tupleHello2Master.c) sends the message “Hello
Workers!” to all workers (tupleHello2Worker.c) and gets the response “Hello Master!!!”
and the worker’s name from each worker. The source code, makefile and csl file for this
application is located in the example02 directory.

The following is the tuple space “Hello Workers!—Hello Master!!!” master program:

#include <stdio.h>
#include <sys/resource.h>

main() {
 int tplength; // Length of ts entry
 int status; // Return status for tuple operations
 int P; // Number of processors
 int i; // Counter index
 int res; // Result tuple space identifier
 int tsd; // Problem tuple space identifier
 char host[128]; // Host machine name
 char tpname[20]; // Identifier of ts entry
 char recdMsg[50]; // Message received from workers

 // Message sent to workers
 char sendMsg[50] = "Hello Workers!\0";

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Master: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem",0);
 // Open result tuple space
 res = cnf_open("result",0);
 printf("Master: Tuple spaces open complete\n");

 // Get number of processors
 P = cnf_getP();
 printf("Master: Processors %d\n", P);

 // Send 'Hello Synergy!' to problem tuple space
 // Set length of send entry
 tplength = sizeof(sendMsg);
 // Set name of entry to host
 strcpy(tpname, host);
 printf("Master: Putting '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put entry in tuple space

Synergy User Manual and Tutorial

137

 status = cnf_tsput(tsd, tpname, sendMsg, tplength);
 printf("Master: Put '%s' complete\n", sendMsg);
 // Sleep 1 second
 sleep(1);

 // Receive 'Hello Back!!!' from result tuple space
 for(i=0; i<P; i++){
 printf("Master: Waiting for reply\n");
 // Set name to any
 strcpy(tpname,"*");
 // Get result from result tuple space
 tplength = cnf_tsget(res, tpname, recdMsg, 0);
 printf("Master: Taking item from %s\n", tpname);
 printf("Master: Took message '%s'\n", recdMsg);
 }

 // Terminate program
 printf("Master: Terminated\n");
 cnf_term();
}

The following is the tuple space “Hello Workers!—Hello Master!!!” worker program:

#include <stdio.h>
#include <sys/resource.h>

main(){
 int tsd; // Problem tuple space identifier
 int res; // Result tuple space identifier
 int status; // Return status for tuple operations
 int tplength; // Length of ts entry
 char host[128]; // Host machine name
 char tpname[20]; // Identifier of ts entry
 char recdMsg[50]; // Message received from master

 // Message sent back to master
 char sendMsg[50] = "Hello Master!!!\0";

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Worker: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem",0);
 // Open result tuple space
 res = cnf_open("result",0);
 printf("Worker: Tuple spaces open complete\n");

 // Set name to any
 strcpy(tpname,"*");
 // Read problem from problen tuple space
 tplength = cnf_tsread(tsd, tpname, recdMsg, 0);
 printf("Worker: Taking item (%s)\n", tpname);

Synergy User Manual and Tutorial

138

 // Normal receive
 if (tplength > 0){
 printf("Worker: Took message: %s from %s\n",
 recdMsg, tpname);
 // Set size of entry
 tplength = sizeof(sendMsg);
 // Set name to host
 sprintf(tpname,"%s", host);
 printf("Worker: Put '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put response in result tuple space
 status = cnf_tsput(res, tpname, sendMsg, tplength);
 printf("Worker: Reply sent\n");
 }

 // Terminate program
 printf("Worker: Terminated\n");
 cnf_term();
}

The makefile and csl file are similar to the “Hello Synergy!” program except that all
occurrences of “tupleHello1…” is changed to “tupleHello2…” in both files. To run the
“Hello Synergy!” distributed application:

1. Make the executables by typing “make” and pressing the enter key.
2. Run the application by typing “prun tupleHello2” and pressing the enter key.

The screen output for the master terminal with Synergy’s initialization and termination
output removed should resemble:

[c615111@owin ~/fpc02]>prun tupleHello2
Master: Tuple spaces open complete
Master: Processors 2
Master: Putting 'Hello Workers!' Length 50 Name owin
Master: Put 'Hello Workers!' complete
Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: Taking item owin
Worker: Took message: ‘Hello Workers!’ from owin
Worker: Put 'Hello Master!!!' Length 50 Name owin
Worker: Reply sent
Worker: Terminated
Master: Waiting for reply
Master: Taking item from saber
Master: Took message 'Hello Master!!!'
Master: Waiting for reply
Master: Taking item from owin
Master: Took message 'Hello Master!!!'
Master: Terminated
[c615111@owin ~/fpc02]>

Synergy User Manual and Tutorial

139

The screen output for the worker terminal with Synergy’s initialization and termination
output removed should resemble:

Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: Taking item owin
Worker: Took message: ‘Hello Workers!’ from owin
Worker: Put 'Hello Master!!!' Length 50 Name saber
Worker: Reply sent
Worker: Terminated

Synergy User Manual and Tutorial

140

Sending and Receiving Data Types

Sending Various Data Types

Synergy can put and get more than characters from its tuple space. The following
example shows how to put various data types into a tuple space and get various data types
out of a tuple space. The master program (tuplePassMaster.c) puts different data types
into the problem tuple space, and the worker (tuplePassWorker.c) gets them, displays
them and puts messages in the result tuple space identifying which data types it took.
This application also uses a distributed semaphore to ensure that the workers take data
properly. It also demonstrates the difference between the cnf_read() and cnf_get()
functions. The tuplePass application is located in the example03 directory. The
tuplePass.h file has the definitions for the constant and the data structure used in the
application.

The following is the tuple space “data type passing” master program:

#include <stdio.h>
#include <sys/resource.h>

#include "tuplePass.h"

main(){
 int tplength; // Length of ts entry
 int status; // Return status for tuple operations
 int P; // Number of processors
 int i; // Counter index
 int res; // Result tuple space identifier
 int tsd; // Problem tuple space identifier
 int sem; // Semaphore
 char host[128]; // Host machine name
 char tpname[20]; // Identifier of ts entry
 char recdMsg[50]; // Message received from workers

 // Different datatypes to send to workers
 // Integer sent to worker
 int num = 12000;
 int *numPtr = #
 // Long integer sent to worker
 long lnum = 1000000;
 long *lnumPtr = &lnum;
 // Float sent to worker
 float frac = 0.5;
 float *fracPtr = &frac;
 // Double sent to worker
 double dfrac = 12345.678;
 double *dfracPtr = &dfrac;
 // Integer array sent to worker
 int numArr[MAX] = {0,1,2,3,4};

Synergy User Manual and Tutorial

141

 // Double array sent to worker
 double dblArr[MAX] = {10000.1234, 2000.567,
 300.89, 40.0, 5.01};
 // String sent to worker
 char sendMsg[50] = "A text string.\0";
 // Struct sent to worker
 struct person bob = {"Bob",
 "123 Broad St.",
 "Pliladelphia", "PA", "19124",
 20, "brown", 70.5, "red"};

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Master: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem",0);
 // Open result tuple space
 res = cnf_open("result",0);
 printf("Master: Tuple spaces open complete\n");

 // Get number of processors
 P = cnf_getP();
 printf("Master: Processors %d\n", P);

 // Put semaphore in problem tuple space
 // Set name to sem
 strcpy(tpname,"sem");
 // Set length for semaphore
 tplength = sizeof(int);
 // Place the semaphore signal in problem ts
 printf("Master: Putting semaphore\n");
 status = cnf_tsput(tsd, tpname, &sem, tplength);

 // Put int num in ts
 // Set length of send entry
 tplength = sizeof(int);
 // Set name of entry to num
 strcpy(tpname, "D_num");
 printf("Master: Putting '%d' Length %d Name %s\n",
 num, tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, numPtr, tplength);
 printf("Master: Put '%d' complete\n", num);

 // Put long lnum in ts
 // Set length of send entry
 tplength = sizeof(long);
 // Set name of entry to lnum
 strcpy(tpname, "D_lnum");
 printf("Master: Putting '%ld' Length %d Name %s\n",
 lnum, tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, lnumPtr, tplength);
 printf("Master: Put '%ld' complete\n", lnum);

Synergy User Manual and Tutorial

142

 // Put float frac in ts
 // Set length of send entry
 tplength = sizeof(float);
 // Set name of entry to frac
 strcpy(tpname, "D_frac");
 printf("Master: Putting '%f' Length %d Name %s\n",
 frac, tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, fracPtr, tplength);
 printf("Master: Put '%f' complete\n", frac);

 // Put double dfrac in ts
 // Set length of send entry
 tplength = sizeof(double);
 // Set name of entry to dfrac
 strcpy(tpname, "D_dfrac");
 printf("Master: Putting '%g' Length %d Name %s\n",
 dfrac, tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, (char *)dfracPtr, tplength);
 printf("Master: Put '%g' complete\n", dfrac);

 // Put int array numArr in ts
 // Set length of send entry
 tplength = sizeof(int)*MAX;
 // Set name of entry to numArr
 strcpy(tpname, "D_numArr");
 printf("Master: Putting\n ");
 for(i=0; i<MAX; i++)
 printf("%d ", numArr[i]);
 printf("\n Length %d Name %s\n", tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, (char *)numArr, tplength);
 printf("Master: Put '%s' complete\n", tpname);

 // Put int array dblArr in ts
 // Set length of send entry
 tplength = sizeof(double)*MAX;
 // Set name of entry to dblArr
 strcpy(tpname, "D_dblArr");
 printf("Master: Putting\n ");
 for(i=0; i<MAX; i++)
 printf("%g ", dblArr[i]);
 printf(" \nLength %d Name %s\n", tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, (char *)dblArr, tplength);
 printf("Master: Put '%s' complete\n", tpname);

 // Put struct bob in ts
 // Set length of send entry
 tplength = sizeof(struct person);
 // Set name of entry to bob
 strcpy(tpname, "D_bob");
 printf("Master: Putting\n");
 printf(" %s\n", bob.name);

Synergy User Manual and Tutorial

143

 printf(" %s %s, %s %s\n",
 bob.address, bob.city, bob.state, bob.zip);
 printf(" %d %s %f %s\n",
 bob.age, bob.eyes, bob.height, bob.hair);
 printf(" Length %d Name %s\n", tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, bob, tplength);
 printf("Master: Put struct bob complete\n");

 // Put string in ts
 // Set length of send entry
 tplength = sizeof(sendMsg);
 // Set name of entry to msg
 strcpy(tpname, "D_msg");
 printf("Master: Putting '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, sendMsg, tplength);
 printf("Master: Put '%s' complete\n", sendMsg);

 // Receive results from result tuple space
 for(i=0; i<8; i++){
 printf("Master: Waiting for reply\n");
 // Set name to any
 strcpy(tpname,"*");
 // Get result from result tuple space
 tplength = cnf_tsget(res, tpname, recdMsg, 0);
 printf("Master: Taking item from (%s)\n", tpname);
 printf("Master: %s took '%s'\n", tpname, recdMsg);
 }

 // Send terminal signal to workers
 printf("Master: Putting terminal signal in problem ts\n");
 // Set length of send entry
 tplength = sizeof(int);
 // Set name of entry to term
 strcpy(tpname, "D_term");
 // Put entries in tuple space
 status = cnf_tsput(tsd, tpname, numPtr, tplength);
 printf("Master: Put terminal in ts\n");

 // Terminate program
 printf("Master: Terminated\n");
 cnf_term();

}

The following is the tuple space data type passing worker program:

#include <stdio.h>
#include <sys/resource.h>

#include "tuplePass.h"

main(){

Synergy User Manual and Tutorial

144

 int tsd; // Problem tuple space identifier
 int res; // Result tuple space identifier
 int status; // Return status for tuple operations
 int tplength; // Length of ts entry
 int i; // Counter index
 int sem = 0; // Semaphore
 char host[128]; // Host machine name
 char tpname[20]; // Identifier of ts entry
 char sendMsg[50]; // Message sent back to master

 // Different datatypes to receive from master
 // Integer received from master
 int num;
 // Long integer received from master
 long lnum;
 // Float received from master
 float frac;
 // Double received from master
 double dfrac;
 // Integer array received from master
 int numArr[MAX];
 // Double array received from master
 double dblArr[MAX];
 // String received from master
 char recdMsg[50];
 // Struct received from master
 struct person bob;

 // Initialize sendMsg
 strcpy(sendMsg, "");

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Worker: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem",0);
 // Open result tuple space
 res = cnf_open("result",0);
 printf("Worker: Tuple spaces open complete\n");

 while(1){
 // Set name to sem
 strcpy(tpname,"sem");
 // Read semaphore from problem tuple space
 tplength = cnf_tsget(tsd, tpname, &sem, 0);
 printf("Worker: Taking semaphore\n");
 // Set name to any
 strcpy(tpname,"D_*");
 tplength = cnf_tsread(tsd, tpname, recdMsg, 0);
 printf("Worker: Taking item %s\n", tpname);

 // Get int num from ts
 if(!strcmp(tpname, "D_num")){

Synergy User Manual and Tutorial

145

 // Read problem from problem tuple space
 tplength = cnf_tsget(tsd, tpname, &num, 0);
 // Record the data type received
 strcpy(sendMsg, tpname);
 // Display the data
 printf("Worker: took %s '%d'\n", tpname, num);
 // Send reply back to master
 // Set size of entry
 tplength = sizeof(sendMsg);
 // Set name to host
 strcpy(tpname, host);
 printf("Worker: Put '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put response in result tuple space
 status = cnf_tsput(res, tpname, sendMsg, tplength);
 printf("Worker: Reply sent\n");
 }

 // Get int lnum from ts
 else if(!strcmp(tpname, "D_lnum")){
 // Read problem from problem tuple space
 tplength = cnf_tsget(tsd, tpname, &lnum, 0);
 // Record the data type recieve
 strcpy(sendMsg, tpname);
 // Display the data
 printf("Worker: took %s '%ld'\n", tpname, lnum);
 // Send reply back to master
 // Set size of entry
 tplength = sizeof(sendMsg);
 // Set name to host
 strcpy(tpname, host);
 printf("Worker: Put '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put response in result tuple space
 status = cnf_tsput(res, tpname, sendMsg, tplength);
 printf("Worker: Reply sent\n");
 }

 // Get int frac from ts
 else if(!strcmp(tpname, "D_frac")){
 // Read problem from problem tuple space
 tplength = cnf_tsget(tsd, tpname, &frac, 0);
 // Record the data type received
 strcpy(sendMsg, tpname);
 // Display the data
 printf("Worker: took %s '%f'\n", tpname, frac);
 // Send reply back to master
 // Set size of entry
 tplength = sizeof(sendMsg);
 // Set name to host
 strcpy(tpname, host);
 printf("Worker: Put '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put response in result tuple space
 status = cnf_tsput(res, tpname, sendMsg, tplength);
 printf("Worker: Reply sent\n");

Synergy User Manual and Tutorial

146

 }

 // Get double dfrac from ts
 else if(!strcmp(tpname, "D_dfrac")){
 // Read problem from problem tuple space
 tplength = cnf_tsget(tsd, tpname, &dfrac, 0);
 // Record the data type received
 strcpy(sendMsg, tpname);
 // Display the data
 printf("Worker: took (%s) '%g'\n", tpname, dfrac);
 // Send reply back to master
 // Set size of entry
 tplength = sizeof(sendMsg);
 // Set name to host
 strcpy(tpname, host);
 printf("Worker: Put '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put response in result tuple space
 status = cnf_tsput(res, tpname, sendMsg, tplength);
 printf("Worker: Reply sent\n");
 }

 // Get integer array numArr
 else if(!strcmp(tpname, "D_numArr")){
 // Read problem from problem tuple space
 tplength = cnf_tsget(tsd, tpname, numArr, 0);
 // Record the data type received
 strcpy(sendMsg, tpname);
 // Display the data
 printf("Worker: took %s\n ", tpname);
 for(i=0; i<MAX; i++)
 printf("%d ", numArr[i]);
 printf("\n Length(%d) Name(%s)\n", tplength, tpname);
 // Send reply back to master
 // Set size of entry
 tplength = sizeof(sendMsg);
 // Set name to host
 strcpy(tpname, host);
 printf("Worker: Put '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put response in result tuple space
 status = cnf_tsput(res, tpname, sendMsg, tplength);
 printf("Worker: Reply sent\n");
 }

 // Get double array dblArr
 else if(!strcmp(tpname, "D_dblArr")){
 // Read problem from problem tuple space
 tplength = cnf_tsget(tsd, tpname, dblArr, 0);
 // Record the data type received
 strcpy(sendMsg, tpname);
 // Display the data
 printf("Worker: took %s\n ", tpname);
 for(i=0; i<MAX; i++)
 printf("%g ", dblArr[i]);
 printf("\n Length %d Name %s\n", tplength, tpname);

Synergy User Manual and Tutorial

147

 // Send reply back to master
 // Set size of entry
 tplength = sizeof(sendMsg);
 // Set name to host
 strcpy(tpname, host);
 printf("Worker: Put '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put response in result tuple space
 status = cnf_tsput(res, tpname, sendMsg, tplength);
 printf("Worker: Reply sent\n");
 }

 // Get struct person bob
 else if(!strcmp(tpname, "D_bob")){
 // Read problem from problem tuple space
 tplength = cnf_tsget(tsd, tpname, &bob, 0);
 // Record the data type received
 strcpy(sendMsg, tpname);
 // Display the data
 printf("Worker: took\n");
 printf(" %s\n", bob.name);
 printf(" %s %s, %s %s\n", bob.address,
 bob.city, bob.state, bob.zip);
 printf(" %d %s %f %s\n", bob.age, bob.eyes,
 bob.height, bob.hair);
 printf(" Length %d Name %s\n", tplength, tpname);
 // Send reply back to master
 // Set size of entry
 tplength = sizeof(sendMsg);
 // Set name to host
 strcpy(tpname, host);
 printf("Worker: Put '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put response in result tuple space
 status = cnf_tsput(res, tpname, sendMsg, tplength);
 printf("Worker: Reply sent\n");
 }

 // Get string
 else if(!strcmp(tpname, "D_msg")){
 // Read problem from problem tuple space
 tplength = cnf_tsget(tsd, tpname, recdMsg, 0);
 // Record the data type received
 strcpy(sendMsg, tpname);
 // Display the data
 printf("Worker: took %s '%s'\n", tpname, recdMsg);
 // Send reply back to master
 // Set size of entry
 tplength = sizeof(sendMsg);
 // Set name to host
 strcpy(tpname, host);
 printf("Worker: Put '%s' Length %d Name %s\n",
 sendMsg, tplength, tpname);
 // Put response in result tuple space
 status = cnf_tsput(res, tpname, sendMsg, tplength);
 printf("Worker: Reply sent\n");

Synergy User Manual and Tutorial

148

 }

 // Get terminal
 else if(!strcmp(tpname, "D_term")){
 printf("Worker: Received terminal\n");
 // Set name to sem
 strcpy(tpname,"sem");
 // Set length for semaphore
 tplength = sizeof(int);
 // Replace the semaphore signal in problem ts
 printf("Worker: Putting semaphore\n");
 status = cnf_tsput(tsd, tpname, &sem, tplength);
 break;
 }

 // Set name to sem
 strcpy(tpname,"sem");
 // Set length for semaphore
 tplength = sizeof(int);
 // Replace the semaphore signal in problem ts
 printf("Worker: Putting semaphore\n");
 status = cnf_tsput(tsd, tpname, &sem, tplength);
 // Sleep 1 second
 sleep(1);

 }

 // Terminate program
 printf("Worker: Terminated\n");
 cnf_term();

}

The makefile and csl file are similar to the last two applications except in the naming of
the application objects and files. To run the data passing distributed application:

1. Make the executables by typing “make” and pressing the enter key.
2. Run the application by typing “prun tuplePass” and pressing the enter key.

 The screen output for the master terminal with Synergy’s initialization and termination
output removed should resemble:

[c615111@owin ~/fpc03]>prun tuplePass2
Master: Opening tuple spaces
Master: Tuple spaces open complete
Master: Processors 2
Master: Putting semaphore
Master: Putting '12000' Length 4 Name D_num
Master: Put '12000' complete
Master: Putting '1000000' Length 4 Name D_lnum
Master: Put '1000000' complete
Master: Putting '0.500000' Length 4 Name D_frac

Synergy User Manual and Tutorial

149

Master: Put '0.500000' complete
Master: Putting '12345.7' Length 8 Name D_dfrac
Master: Put '12345.7' complete
Master: Putting
 0 1 2 3 4
Length 20 Name D_numArr
Master: Put 'D_numArr' complete
Master: Putting
 10000.1 2000.57 300.89 40 5.01
 Length 40 Name D_dblArr
Master: Put 'D_dblArr' complete
Master: Putting
 Bob
 123 Broad St. Pliladelphia, PA 19124
 20 brown 70.500000 red
 Length 164 Name D_bob
Master: Put struct bob complete
Master: Putting 'A text string.' Length 50 Name D_msg
Master: Put 'A text string.' complete
Master: Waiting for reply
Master: Taking item from saber
Master: saber took 'D_num'
Master: Waiting for reply
Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: Taking semaphore
Worker: Taking item D_lnum
Worker: took D_lnum '1000000'
Worker: Put 'D_lnum' Length 50 Name owin
Master: Taking item from owin
Master: owin took 'D_lnum'
Master: Waiting for reply
Worker: Reply sent
Worker: Putting semaphore
Master: Taking item from saber
Master: saber took 'D_frac'
Master: Waiting for reply
Worker: Taking semaphore
Worker: Taking item D_dfrac
Worker: took (D_dfrac) '12345.7'
Worker: Put 'D_dfrac' Length 50 Name owin
Master: Taking item from owin
Master: owin took 'D_dfrac'
Master: Waiting for reply
Worker: Reply sent
Worker: Putting semaphore
Master: Taking item from saber
Master: saber took 'D_numArr'
Master: Waiting for reply
Worker: Taking semaphore
Worker: Taking item D_dblArr
Worker: took D_dblArr
 10000.1 2000.57 300.89 40 5.01
 Length 40 Name D_dblArr
Worker: Put 'D_dblArr' Length 50 Name owin
Worker: Reply sent

Synergy User Manual and Tutorial

150

Worker: Putting semaphore
Master: Taking item from owin
Master: owin took 'D_dblArr'
Master: Waiting for reply
Master: Taking item from saber
Master: saber took 'D_bob'
Master: Waiting for reply
Worker: Taking semaphore
Worker: Taking item D_msg
Worker: took D_msg 'A text string.'
Worker: Put 'D_msg' Length 50 Name owin
Worker: Reply sent
Worker: Putting semaphore
Master: Taking item from owin
Master: owin took 'D_msg'
Master: Putting terminal signal in problem ts
Master: Put terminal in ts
Master: Terminated
Worker: Taking semaphore
Worker: Taking item D_term
Worker: Received terminal
Worker: Putting semaphore
Worker: Terminated

The screen output for the worker terminal with Synergy’s initialization and termination
output removed should resemble:

Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: Taking semaphore
Worker: Taking item D_num
Worker: took D_num '12000'
Worker: Put 'D_num' Length 50 Name saber
Worker: Reply sent
Worker: Putting semaphore
Worker: Taking semaphore
Worker: Taking item D_frac
Worker: took D_frac '0.500000'
Worker: Put 'D_frac' Length 50 Name saber
Worker: Reply sent
Worker: Putting semaphore
Worker: Taking semaphore
Worker: Taking item D_numArr
Worker: took D_numArr
 0 1 2 3 4
 Length(20) Name(D_numArr)
Worker: Put 'D_numArr' Length 50 Name saber
Worker: Reply sent
Worker: Putting semaphore
Worker: Taking semaphore
Worker: Taking item D_bob
Worker: took
 Bob
 123 Broad St. Philadelphia, PA 19124

Synergy User Manual and Tutorial

151

 20 brown 70.500000 red
 Length 164 Name D_bob
Worker: Put 'D_bob' Length 50 Name saber
Worker: Reply sent
Worker: Putting semaphore
Worker: Taking semaphore
Worker: Taking item D_term
Worker: Received terminal
Worker: Putting semaphore
Worker: Terminated

Synergy User Manual and Tutorial

152

Getting Workers to Work

Sum of First N Integers

The calculation of the sum of the first n integers or ∑
=

n

i

i
1

 can be easily calculated in a

regular computer program. An ANSI C program would be:

#include <stdio.h>
#define N 6

int main{
 int i;
 int sum = 0;

 for(i=N; i>=N; i--)
 sum+=i;

 printf(“The sum of the first %d integers is %d\n”, N, sum);
 return 0;
}

This problem can easily be performed in a parallel program by having the master
(tupleSum1Master.c) put each integer into the problem tuple space. The workers
(tupleSum1Workers.c) take the integers out of the problem tuple space, tally their
respective sub sums and put the sub sums into the result tuple space. The master gets the
sub sums from the result tuple space and produces the desires sum. This application is
located in the example04 directory.

The following is the tuple space sum of n integers master program:

#include <stdio.h>
#include <sys/resource.h>

main(){

 int P; // Number of processors
 int i; // Counter index
 int status; // Return status for tuple operations
 int res; // Result tuple space identifier
 int tsd; // Problem tuple space identifier
 int maxNum = 6; // MAX of n for sum of 1..n
 int sendNum = 0; // Number sent to problem ts
 int *sendPtr = &sendNum; // Pointer to sendNum
 int recdSum = 0; // Subsum received from result ts
 int *recdPtr = &recdSum; // Pointer to recdSum
 int calcSum = 0; // Calculated sum
 int sumTotal = 0; // Sum total of all subsums
 int tplength; // Length of ts entry

Synergy User Manual and Tutorial

153

 char tpname[20]; // Identifier of ts entry
 char host[128]; // Host machine name

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Master: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem", 0);
 // Open result tuple space
 res = cnf_open("result", 0);
 printf("Master: Tuple spaces open complete\n");

 // Get number of processors
 P = cnf_getP();
 printf("Master: Processors %d\n", P);

 // Send integers to problem tuple space
 // Set length of entry
 tplength = sizeof(int);
 printf("Master: tplength = (%d)\n", tplength);
 // Set maximum n
 sendNum = maxNum;
 printf("Master: Putting 1...%d to problem tuple space\n", maxNum);
 // Loop until all numbers are sent to workers
 while (sendNum > 0) {
 printf("Master: Putting %d\n", sendNum);
 // Set name of entry
 sprintf(tpname,"%d", sendNum);
 // Put entry in problem tuple space
 status = cnf_tsput(tsd, tpname, (char *)sendPtr, tplength);
 // Decrement number to set entry value
 sendNum--;
 }
 printf("Master: Finished sending 1...%d to tuple space\n", maxNum);

 // Insert negative integer tuple as termination signal
 printf("Master: Sending terminal signal\n");
 // Set length of entry
 tplength = sizeof(int);
 // Set entry value
 sendNum = -1;
 // Set entry name
 sprintf(tpname, "%d", maxNum+1);
 // Put entry in problem tuple space
 status = cnf_tsput(tsd, tpname, (char *)sendPtr, tplength);
 printf("Master: Finished sending terminal signal\n");

 // Receive sub sums from result tuple space
 i = 1;
 printf("Master: Getting sub sums from result tuple space\n");
 while (i <= P){
 // Set name of entry to any
 strcpy(tpname,"*");
 // Get entry from result tuple space

Synergy User Manual and Tutorial

154

 tplength = cnf_tsget(res, tpname, (char *)recdPtr, 0);
 printf("Master: Received %d from %s\n", recdSum, tpname);
 // Add result to total
 sumTotal += recdSum;
 // Increment counter
 i++;
 }
 printf("Master: The sum total is: %d\n", sumTotal);

 // Calculate correct answer with math formula
 calcSum = (maxNum*(maxNum+1))/2;
 printf ("Master: The calculated sum is: %d\n", calcSum);

 // Compare results
 if(calcSum == sumTotal)
 printf("Master: The workers gave the correct answer\n");
 else
 printf("Master: The workers gave an incorrect answer\n");

 // Terminate program
 printf("Master: Terminated\n");
 cnf_term();
}

The following is the tuple space sum of n integers worker program:

#include <stdio.h>
#include <sys/resource.h>

main(){

 // Variable declarations
 int tsd; // Problem tuple space identifier
 int res; // Result tuple space identifier
 int recdNum = 0; // Number received to be added
 int *recdPtr = &recdNum; // Pointer to recdNum
 int sendSum = 0; // Sum of numbers received
 int *sendPtr = &sendSum; // Pointer to sendSum
 int status; // Return status for tuple operations
 int tplength; // Length of ts entry
 char tpname[20]; // Identifier of ts entry
 char host[128]; // Host machine name

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Worker: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem", 0);
 // Open result tuple space
 res = cnf_open("result", 0);
 printf("Worker: Tuple spaces open complete\n");

 // Loop forever to accumulate sendSum

Synergy User Manual and Tutorial

155

 printf("Worker: Beginning to accumulate sum\n");
 while(1){
 // Set name to any
 strcpy(tpname, "*");
 // Get problem from tuple space
 tplength = cnf_tsget(tsd, tpname, (char *)recdPtr, 0);
 printf("Worker: Took item %s\n", tpname);
 // If normal receive
 if(recdNum > 0){
 // Add to sum
 sendSum += recdNum;
 printf("Worker: Present subtotal is %d\n", sendSum);
 }
 // Else terminate worker
 else{
 printf("Worker: Received terminal signal\n");
 // Put terminal message back in problem tuple space
 status = cnf_tsput(tsd, tpname, (char *)recdPtr, tplength);
 // Set length of entry
 tplength = sizeof(int);
 // Set name of entry to host
 sprintf(tpname,"%s", host);
 printf("Worker: Sending sum %d\n", sendSum);
 // Put sum in result tuple space
 status = cnf_tsput(res, tpname, (char *)sendPtr, tplength);
 // Terminate worker
 printf("Worker: Terminated\n");
 cnf_term();
 }
 // Sleep 1 second
 sleep(1);
 }
}

To run the sum of first n integers distributed application:

1. Make the executables by typing “make” and pressing the enter key.
2. Run the application by typing “prun tupleSum1” and pressing the enter key.

The screen output for the master terminal with Synergy’s initialization and termination
output removed should resemble:

[c615111@owin ~/fpc04]>prun tupleSum1
Master: Opening tuple spaces
Master: Tuple spaces open complete
Master: Processors 2
Master: tplength = (4)
Master: Putting 1...6 to problem tuple space
Master: Putting 6
Master: Putting 5
Master: Putting 4
Master: Putting 3
Master: Putting 2

Synergy User Manual and Tutorial

156

Master: Putting 1
Master: Finished sending 1...6 to tuple space
Master: Sending terminal signal
Master: Finished sending terminal signal
Master: Getting sub sums from result tuple space
Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: Beginning to accumulate sum
Worker: Took item 5
Worker: Present subtotal is 5
Worker: Took item 3
Worker: Present subtotal is 8
Worker: Took item 1
Worker: Present subtotal is 9
Master: Received 12 from saber
Worker: Took item 7
Worker: Received terminal signal
Worker: Sending sum 9
Worker: Terminated
Master: Received 9 from owin
Master: The sum total is: 21
Master: The calculated sum is: 21
Master: The workers gave the correct answer
Master: Terminated
[c615111@owin ~/fpc04]>

The screen output for the worker terminal with Synergy’s initialization and termination
output removed should resemble:

Worker: Tuple spaces open complete
Worker: Beginning to accumulate sum
Worker: Took item 6
Worker: Present subtotal is 6
Worker: Took item 4
Worker: Present subtotal is 10
Worker: Took item 2
Worker: Present subtotal is 12
Worker: Took item 7
Worker: Received terminal signal
Worker: Sending sum 12
Worker: Terminated

Matrix Multiplication

Matrix multiplication, A ⋅ B = C, can be performed by a traditional C program using the
following function:

void multIntMats(int A[N][N], int B[N][N], int C[N][N]){
 int i=0, j=0, k=0;
 for(i=0; i<N; i++){

Synergy User Manual and Tutorial

157

 for(j=0; j<N; j++){
 C[i][j] = 0;
 for(k=0; k<N; k++)
 C[i][j] += A[i][k]*B[k][j];
 }
 }
}

The program uses nested loops to calculate the value of the elements in the C matrix by
performing multiplications across each of the elements in each row of the A matrix with
each of the elements in each column of the B matrix. In other words, the value at
position C[0][0] is calculated by adding the products across the first row of A with those
of the first column B such that:

∑
−

=

⋅=
1

0

]0][[]][0[]0][0[
n

k

kBkAC .

And by the function above for an n × n matrix we have:

∑
−

=

⋅=
1

0

]][[]][[]][[
n

k

jkBkiAjiC , 0 ≤ i ≤ n-1, 0 ≤ j ≤ n-1.

We can conclude that:

∑
−

=

⋅=
1

0

]][[]][0[]][0[
n

k

jkBkAjC , 0 ≤ j ≤ n-1.

Or in terms of the multiplication of a vector by a matrix for the ith rows of A and C:

∑
−

=

⋅=
1

0

]][[][][
n

k

ii jkBkAjC , 0 ≤ i ≤ n-1, 0 ≤ j ≤ n-1.

A parallel program can perform matrix multiplication by having the master
(tupleMat1Master.c) puts the whole matrix B as another single entry and each row of A
into the tuple space as a single entry. The worker (tupleMat1Worker.c) reads the whole
B matrix and takes individual rows of A out of the problem tuple space. Given an n-
length array Ai, which is a single row of A, the whole B matrix and an array Ci to store
the result of the procedure, which is a row of C, the worker performs the following
(simplified for illustration) procedure on the data:

Begin procedure worker multiply
Get B from problem tuple space
While there are arrays in tuple space
 Get an array from problem tuple space and put in Ai
 For i=0..n-1
 Set Ci[i] to 0
 For j=0..n-1
 Ci[i] += Ai[j] * B[j][i]
 Put array Ci in result tuple space
End procedure worker multiply

Synergy User Manual and Tutorial

158

The procedure multiplies an array (or vector) by a matrix. An example of this procedure
is:

The master will know which row to put the Ci results in because the tuple name (the i)
will be the row number, which is also the tuple entry name. The multiplication of A and
B after the results were taken out of the result tuple space and assembled by the master
would be:

Notice that the multiplication produces the identity matrix. The B matrices used in
examples are intentionally set to be the inverse of their respective A matrices to
demonstrate that the programs actually work. The files for this application are located in
the example05 directory. The master program for the matrix multiplication is:

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>

#define N 6

A

1

0

1

0

0

0

0

1

0

1

0

0

1

0

1

0

1

0

0

1

0

1

0

1

0

0

1

0

1

0

0

0

0

1

0

1

B

0

0

1

0

1

0

0

0

0

1

0

1

1

0

1

0

1

0

0

1

0

1

0

1

1

0

1

0

0

0

0

1

0

1

0

0

= C A B. C

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

= B A
1

B

0

0

1

0

1

0

0

0

0

1

0

1

1

0

1

0

1

0

0

1

0

1

0

1

1

0

1

0

0

0

0

1

0

1

0

0

=A0 1 0 1 0 0 0() C0 A0 B. C0 1 0 0 0 0 0()=

Synergy User Manual and Tutorial

159

main(){

 int i, j; // Matrix indices
 int tplength; // Length of ts entry
 int status; // Return status for tuple operations
 int P; // Number of processors
 int res; // Result tuple space identifier
 int tsd; // Problem tuple space identifier
 int n; // Counter
 int Ai[N]; // Row from A to send to worker
 int Ci[N]; // Row from C to get from worker
 char host[128]; // Host machine name
 char tpname[20]; // Identifier of ts entry

 // The A matrix to break up into arrays
 // and send to workers
 int A[N][N] = {{1,0,1,0,0,0},
 {0,1,0,1,0,0},
 {1,0,1,0,1,0},
 {0,1,0,1,0,1},
 {0,0,1,0,1,0},
 {0,0,0,1,0,1}};
 // The B matrix to send to workers
 int B[N][N] = {{0,0,1,0,-1,0},
 {0,0,0,1,0,-1},
 {1,0,-1,0,1,0},
 {0,1,0,-1,0,1},
 {-1,0,1,0,0,0},
 {0,-1,0,1,0,0}};
 // The C matrix built from arrays
 // received from workers
 int C[N][N];

 printf("Master: started\n");

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Master: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem",0);
 // Open result tuple space
 res = cnf_open("result",0);
 printf("Master: Tuple spaces open complete\n");

 // Get number of processors
 P = cnf_getP(); // Get number of processors
 printf("Master: Processors %d\n", P);

 // Print matrix A and B
 printf("Master: Matrix A\n");
 for(i=0; i<N; i++){
 for(j=0; j<N; j++){
 printf(" %d", A[i][j]);
 }

Synergy User Manual and Tutorial

160

 printf("\n");
 }
 printf("Master: Matrix B\n");
 for(i=0; i<N; i++){
 for(j=0; j<N; j++){
 printf(" %d", B[i][j]);
 }
 printf("\n");
 }

 printf("Master: Starting C = A . B\n");

 // Put B matrix in ts
 // Set length of send entry
 tplength = N*N*sizeof(int);
 // Set name of entry to B
 sprintf(tpname,"B",0);
 printf("Master: Putting Length %d Name %s\n", tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, B, tplength);

 // Put A matrix in ts
 // Set length of send entry
 tplength = N*sizeof(int);
 printf("tplength = %d\n", tplength);

 // Ready to build Ai row
 for (i = 0; i < N; i++){
 // Set the rows name to row index
 sprintf(tpname,"A%d",i);
 printf("Master: Putting item %s ", tpname);
 // Put a row from A matrix in ituple_A array
 for (j = 0; j < N; j++){
 Ai[j] = A[i][j];
 printf("%d ", Ai[j]);
 }
 printf("\n");
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, Ai, tplength);
 }

 // Build C matrix from workers' results
 for(n=0; n<N; n++){
 // Set name to any
 strcpy(tpname,"*");
 // Read result from result tuple space
 tplength = cnf_tsget(res, tpname, Ci, 0);
 printf("Master: Received %s\n", tpname);
 // Set received row to tpname
 i = atoi(tpname);
 // Add this array to C
 for (j=0; j<N; j++) {
 C[i][j] = Ci[j];
 }
 }

Synergy User Manual and Tutorial

161

 // Print the C matrix from workers
 printf("Master: Matrix C\n");
 for(i=0; i<N; i++){
 for(j=0; j<N; j++){
 printf(" %d", C[i][j]);
 }
 printf("\n");
 }

 // Insert –2 tuple as termination signal
 // Set length of send entry
 printf("Master: Putting terminal signal\n");
 tplength = sizeof(int);
 Ai[0] = -2;
 sprintf(tpname, "A%d",N);
 status = cnf_tsput(tsd, tpname, Ai, tplength);

 // Terminate master
 printf("Master: Terminated\n");
 cnf_term();
}

The following is the tuple space matrix multiplication worker program:

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>

#define N 6

main(){

 int tsd; // Problem tuple space identifier
 int res; // Result tuple space identifier
 int i, j; // Matrix indices
 int n; // Counter
 int status; // Return status for tuple operations
 int tplength; // Length of ts entry
 int Ai[N]; // Row from A to get from master
 int Ci[N]; // Column from C to send to master
 int B[N][N]; // B matrix received from master
 char host[128]; // Host machine name
 char tpname[20]; // Identifier of ts entry

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Worker: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem",0);
 // Open result tuple space
 res = cnf_open("result",0);
 printf("Worker: Tuple spaces open complete\n");

Synergy User Manual and Tutorial

162

 // Set name to B
 strcpy(tpname,"B");
 // Read B matrix from problem tuple space
 status = cnf_tsread(tsd, tpname, B, 0);
 tplength = (N*N)*sizeof(double);

 printf("Worker: Matrix B\n");
 for(i=0; i<N; i++){
 for(j=0; j<N; j++){
 printf(" %d", B[i][j]);
 }
 printf("\n");
 }

 // Loop forever to get work
 while(1){
 // Set name to any
 strcpy(tpname,"A*");
 // Read problem from problem tuple space
 tplength = cnf_tsget(tsd, tpname, Ai, 0);
 printf("Worker: Taking item %s", tpname);

 // Normal receive
 if(tplength > 0){
 printf("\n");
 // Check for the application termination signal
 if (Ai[0] < -1){
 // Replace the terminal signal in problem ts
 status = cnf_tsput(tsd, tpname, Ai, tplength);
 printf("Worker: Terminated s\n");
 cnf_term();
 }

 for(i=0; i<N; i++)
 printf(" %d", Ai[i]);
 printf("\n");

 // Perform multiplication on array and matrix
 for(i=0; i<N; i++){
 Ci[i] = 0;
 for(j=0; j<N; j++)
 Ci[i] += Ai[j]*B[j][i];
 }

 // Get row number
 i = atoi(&tpname[1]);

 // Print the result array
 printf("Worker : Array C%s", tpname);
 for(n=0; n<N; n++)
 printf(" %d", Ci[n]);
 printf("\n");

 // Set name to row number
 sprintf(tpname,"%d",i);
 // Put the result in the result tuple space

Synergy User Manual and Tutorial

163

 status = cnf_tsput(res, tpname, Ci, tplength);
 sleep(1);
 }

 // Else a zero length tuple was received
 else{
 printf("Worker: Error-received zero length tuple");
 printf("Worker: Terminated\n");
 cnf_term();
 }
 }
}

To run the matrix multiplication distributed application:

1. Make the executables by typing “make” and pressing the enter key.
2. Run the application by typing “prun tupleMat1” and pressing the enter key.

The screen output for the master terminal with Synergy’s initialization and termination
output removed should resemble:

[c615111@owin ~/fpc05]>prun tupleMat1
Master: Tuple spaces open complete
Master: Processors 2
Master: Matrix A
 1 0 1 0 0 0
 0 1 0 1 0 0
 1 0 1 0 1 0
 0 1 0 1 0 1
 0 0 1 0 1 0
 0 0 0 1 0 1
Master: Matrix B
 0 0 1 0 -1 0
 0 0 0 1 0 -1
 1 0 -1 0 1 0
 0 1 0 -1 0 1
 -1 0 1 0 0 0
 0 -1 0 1 0 0
Master: Starting C = A . B
Master: Putting Length 144 Name B
Master: tplength = 24
Master: Putting item A0 1 0 1 0 0 0
Master: Putting item A1 0 1 0 1 0 0
Master: Putting item A2 1 0 1 0 1 0
Master: Putting item A3 0 1 0 1 0 1
Master: Putting item A4 0 0 1 0 1 0
Master: Putting item A5 0 0 0 1 0 1
Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: Matrix B
 0 0 1 0 -1 0
 0 0 0 1 0 -1
Master: Received 0

Synergy User Manual and Tutorial

164

 1 0 -1 0 1 0
 0 1 0 -1 0 1
 -1 0 1 0 0 0
 0 -1 0 1 0 0
Worker: Taking item A1
 0 1 0 1 0 0
Worker : Array CA1 0 1 0 0 0 0
Master: Received 1
Worker: Taking item A2
 1 0 1 0 1 0
Worker : Array CA2 0 0 1 0 0 0
Master: Received 2
Master: Received 3
Worker: Taking item A4
 0 0 1 0 1 0
Worker : Array CA4 0 0 0 0 1 0
Master: Received 4
Master: Received 5
Master: Matrix C
 1 0 0 0 0 0
 0 1 0 0 0 0
 0 0 1 0 0 0
 0 0 0 1 0 0
 0 0 0 0 1 0
 0 0 0 0 0 1
Master: Putting terminal signal
Master: Terminated
Worker: Taking item A6
Worker: Terminated
[c615111@owin ~/fpc05]>

The screen output for the worker terminal with Synergy’s initialization and termination
output removed should resemble:

Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: Matrix B
 0 0 1 0 -1 0
 0 0 0 1 0 -1
 1 0 -1 0 1 0
 0 1 0 -1 0 1
 -1 0 1 0 0 0
 0 -1 0 1 0 0
Worker: Taking item A0
 1 0 1 0 0 0
Worker : Array CA0 1 0 0 0 0 0
Worker: Taking item A3
 0 1 0 1 0 1
Worker : Array CA3 0 0 0 1 0 0
Worker: Taking item A5
 0 0 0 1 0 1
Worker : Array CA5 0 0 0 0 0 1
Worker: Taking item A6
Worker: Terminated

Synergy User Manual and Tutorial

165

Synergy User Manual and Tutorial

166

Work Distribution by Chunking

Finding the Sum of the First n Integers with Chunking

The following is the tuple space “sum of n integers” master program implemented by
sending work in chunks:

#include <stdio.h>
#include <sys/resource.h>

#define N 32

main(){

 int P; // Number of processors
 int chunk_size; // Chunk size
 int remainder; // Remainder of numbers to be sent
 int i; // Counter index
 int job; // Job number
 int status; // Return status for tuple operations
 int res; // Result tuple space identifier
 int tsd; // Problem tuple space identifier
 int *sendArr = 0; // Number sent to problem ts
 int sendNum; // Number sent to worker in sendArr
 int recdSum = 0; // Subsum recieved from result ts
 int *recdPtr = &recdSum; // Pointer to recdSum
 int calcSum = 0; // Calculated sum
 int sumTotal = 0; // Sum total of all subsums
 int tplength; // Length of ts entry
 char tpname[20]; // Identifier of ts entry
 char host[128]; // Host machine name

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Master: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem", 0);
 // Open result tuple space
 res = cnf_open("result", 0);
 printf("Master: Tuple spaces open complete\n");

 // Get number of processors
 P = cnf_getP();
 printf("Master: Processors %d\n", P);
 // Get chunk size
 chunk_size = cnf_getf();
 printf("Master: Chunk size %d\n", chunk_size);

 // Put chunk size in ts
 // Set length of entry

Synergy User Manual and Tutorial

167

 tplength = sizeof(int);
 // Set name of entry
 strcpy(tpname, "chunk_size");
 // Put entry in ts
 status = cnf_tsput(tsd, tpname, &chunk_size, tplength);
 printf("Master: Sent chunk size\n");

 // Send integers to problem tuple space
 // Set length of entry to chunk_size + 1 integers
 tplength = (chunk_size+1) * sizeof(int);
 printf("Master: tplength = %d\n", tplength);

 // Prepare and send integer arrays into tuple space
 printf("Master: Putting 1...%d to problem tuple space\n", N);
 if((sendArr = (int *) malloc(tplength)) == NULL)
 exit(1);
 // Loop until all numbers are sent to workers
 remainder = N;
 job = 0;
 sendNum = 1;
 while (remainder > 0) {
 if (remainder < chunk_size)
 chunk_size = remainder;
 remainder = remainder - chunk_size;
 job++;
 // Set name of entry to job number
 sprintf(tpname,"A%d", job);
 // Put chunk_size in index zero
 sendArr[0] = chunk_size;
 printf("Master: Putting %s Size %d\n ", tpname, sendArr[0]);
 // Put chunk_size integers in array
 for(i=1; i<=chunk_size; i++, sendNum){
 sendArr[i] = sendNum++;
 printf(" %d", sendArr[i]);
 }
 printf("\n");
 // Put entry in problem tuple space
 status = cnf_tsput(tsd, tpname, sendArr, tplength);
 // Decrement number to set entry value
 }
 printf("Master: Finished sending 1...%d to tuple space\n", N);

 // Receive sub sums from result tuple space
 // Set index to 1
 i = 1;
 printf("Master: Getting sub sums from result tuple space\n");
 while (job-- > 0){
 // Set name of entry to any
 strcpy(tpname,"*");
 // Get entry from result tuple space
 tplength = cnf_tsget(res, tpname, (char *)recdPtr, 0);
 printf("Master: Recieved %d from %s\n", recdSum, tpname);
 // Add result to total
 sumTotal += recdSum;
 // Increment counter
 }

Synergy User Manual and Tutorial

168

 printf("Master: The sum total is: %d\n", sumTotal);

 // Calculate correct answer with math formula
 calcSum = (N*(N+1))/2;
 printf ("Master: The formula calculated sum is: %d\n", calcSum);

 // Compare results
 if(calcSum == sumTotal)
 printf("Master: The workers gave the correct answer\n");
 else
 printf("Master: The workers gave an incorrect answer\n");

 // Insert negative integer tuple as termination signal
 printf("Master: Sending terminal signal\n");
 // Set length of entry
 tplength = (1) * sizeof(int);
 // Set entry value
 sendArr[0] = -1;
 // Set entry name
 sprintf(tpname, "A%d", N+1);
 // Send entry to tuple space
 status = cnf_tsput(tsd, tpname, sendArr, tplength);
 printf("Master: Finished sending terminal signal\n");

 // Terminate program
 printf("Master: Terminated\n");
 cnf_term();
}

The following is the tuple space “sum of n integers” worker program implemented by
receiving work in chunks:

#include <stdio.h>
#include <sys/resource.h>

main(){

 // Variable declarations
 int tsd; // Problem tuple space identifier
 int res; // Result tuple space identifier
 int *recdPtr; // Pointer to recd array
 int sendSum = 0; // Sum of numbers received
 int *sendPtr = &sendSum; // Pointer to sendSum
 int status; // Return status for tuple operations
 int tplength; // Length of ts entry
 int chunk_size; // Size of recdPtr
 int i; // Index counter
 char tpname[20]; // Identifier of ts entry
 char host[128]; // Host machine name

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces

Synergy User Manual and Tutorial

169

 printf("Worker: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem", 0);
 // Open result tuple space
 res = cnf_open("result", 0);
 printf("Worker: Tuple spaces open complete\n");

 // Get the chunk size from ts
 // Set name of entry
 strcpy(tpname, "chunk_size");
 // Read chunk size
 status = cnf_tsread(tsd, tpname, &chunk_size, 0);
 printf("Worker: Chunk size %d\n", chunk_size);

 // Set length of tuple space entry
 tplength = (chunk_size+1) * sizeof(int);
 // Allocate memory for entry
 if((recdPtr = (int *)malloc(tplength)) == NULL)
 exit(-1);
 printf("Worker: array size %d\n", tplength);

 // Loop forever to accumulate sendSum
 printf("Worker: Begining to accumulate sum\n");
 while(1){
 sendSum = 0;
 // Set name to any
 strcpy(tpname, "A*");
 // Get problem from tuple space
 tplength = cnf_tsget(tsd, tpname, recdPtr, 0);
 // Get chunk_size from index zero
 chunk_size = (int) recdPtr[0];
 printf("Worker: Took item %s length %d\n ", tpname, chunk_size);
 // If normal receive
 if(chunk_size > 0){
 // Get number of array elements
 // Add to sendSum
 for(i=1; i<=chunk_size; i++){
 sendSum += recdPtr[i];
 printf(" %d", recdPtr[i]);
 }
 // Set length of entry
 tplength = sizeof(int);
 // Set name of entry to host
 strcpy(tpname, host);
 printf("\nWorker: Sending sum %d\n", sendSum);
 // Put sum in result tuple space
 status = cnf_tsput(res, tpname, sendPtr, tplength);
 }
 // Else terminate worker
 else{
 printf("Worker: Recieved terminal signal\n");
 // Put terminal message back in problem tuple space
 status = cnf_tsput(tsd, tpname, recdPtr, tplength);
 // Terminate worker
 printf("Worker: Terminated\n");
 cnf_term();

Synergy User Manual and Tutorial

170

 }
 // Sleep 1 second
 sleep(1);
 }
}

To run the sum of first n integers distributed application with chunking:

1. Make the executables by typing “make” and pressing the enter key.
2. Run the application by typing “prun tupleSum2” and pressing the enter key.

The screen output for the master terminal with Synergy’s initialization and termination
output removed should resemble:

[c615111@owin ~/fpc06]>prun tupleSum2
Master: Opening tuple spaces
Master: Tuple spaces open complete
Master: Processors 2
Master: Chunk size 4
Master: Sent chunk size
Master: tplength = 20
Master: Putting 1...32 to problem tuple space
Master: Putting A1 Size 4
 1 2 3 4
Master: Putting A2 Size 4
 5 6 7 8
Master: Putting A3 Size 4
 9 10 11 12
Master: Putting A4 Size 4
 13 14 15 16
Master: Putting A5 Size 4
 17 18 19 20
Master: Putting A6 Size 4
 21 22 23 24
Master: Putting A7 Size 4
 25 26 27 28
Master: Putting A8 Size 4
 29 30 31 32
Master: Finished sending 1...32 to tuple space
Master: Getting sub sums from result tuple space
Master: Recieved 10 from saber
Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: Chunk size 4
Worker: array size 20
Worker: Begining to accumulate sum
Worker: Took item A2 length 4
 5 6 7 8
Worker: Sending sum 26
Master: Recieved 26 from owin
Master: Recieved 42 from saber
Worker: Took item A4 length 4
 13 14 15 16

Synergy User Manual and Tutorial

171

Worker: Sending sum 58
Master: Recieved 58 from owin
Master: Recieved 74 from saber
Worker: Took item A6 length 4
 21 22 23 24
Worker: Sending sum 90
Master: Recieved 90 from owin
Master: Recieved 106 from saber
Worker: Took item A8 length 4
 29 30 31 32
Worker: Sending sum 122
Master: Recieved 122 from owin
Master: The sum total is: 528
Master: The formula calculated sum is: 528
Master: The workers gave the correct answer
Master: Sending terminal signal
Master: Finished sending terminal signal
Master: Terminated
Worker: Took item A33 length -1
Worker: Recieved terminal signal
Worker: Terminated
[c615111@owin ~/fpc06]>

The screen output for the worker terminal with Synergy’s initialization and termination
output removed should resemble:

Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: Chunk size 4
Worker: array size 20
Worker: Begining to accumulate sum
Worker: Took item A1 length 4
 1 2 3 4
Worker: Sending sum 10
Worker: Took item A3 length 4
 9 10 11 12
Worker: Sending sum 42
Worker: Took item A5 length 4
 17 18 19 20
Worker: Sending sum 74
Worker: Took item A7 length 4
 25 26 27 28
Worker: Sending sum 106
Worker: Took item A33 length -1
 Worker: Recieved terminal signal
Worker: Terminated

Matrix Multiplication with Chunking

Synergy User Manual and Tutorial

172

The following is the tuple space “matrix multiplication” master program implemented by
sending work in chunks:

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>

#include "matrix.h"

// The A matrix to break up into arrays
// and send to workers
double A[N][N];
// The B matrix
double B[N][N];
// The resulting C matrix
double C[N][N];

A

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

= B

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 -1

0 0 0 0 0 0 0 1 -1 0

0 0 0 0 0 0 1 -1 0 0

0 0 0 0 0 1 -1 0 0 0

0 0 0 0 1 -1 0 0 0 0

0 0 0 1 -1 0 0 0 0 0

0 0 1 -1 0 0 0 0 0 0

0 1 -1 0 0 0 0 0 0 0

1 -1 0 0 0 0 0 0 0 0

=

C A B. C

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

= B A
1

Synergy User Manual and Tutorial

173

main(){

 int processors; // Number of processors
 int chunk_size; // Chunk size
 int remaining; // Remaining arrays of work
 int i, j; // Matrix indices
 int matrix_row; // Index of matrix row
 int array_pos; // Array position in rows array
 int status; // Return status for tuple operations
 int res; // Result tuple space identifier
 int tsd; // Problem tuple space identifier
 double *rows; // Rows from A to send to worker
 double worker_time; // Sum of times returned by workers
 double total_time; // Total application run time
 int tplength; // Length of ts entry
 char tpname[20]; // Identifier of ts entry
 char host[128]; // Host machine name

 // Get host machine name
 gethostname(host, sizeof(host));

 // Get time stamp
 total_time = wall_clock();

 // Open tuple spaces
 printf("Master: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem",0);
 // Open result tuple space
 res = cnf_open("result",0);
 printf("Master: Tuple spaces open complete\n");

 // Get number of processors
 processors = cnf_getP();
 printf("Master: Processors %d\n", processors);
 // Get chunk size
 chunk_size = cnf_getf();
 printf("Master: Chunk size %d\n", chunk_size);

 printf("Master: Starting C = A . B\n");
 printf(" on %d x %d matrices\n", N, N);

 // Create and print matrix B
 makeDblInv(B);
 if(N <= 36)
 printDblMat(B, 'B');

 // Put B matrix in ts
 // Set size of B matrix
 tplength = N*N*sizeof(double);
 // Set name of entry to B
 sprintf(tpname,"B",0);
 printf("Master: Putting B Length(%d) Name(%s)\n",
 tplength, tpname);

Synergy User Manual and Tutorial

174

 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, B, tplength);

 // Create and print matrix A
 makeDblMat(A);
 if(N <= 36)
 printDblMat(A, 'A');

 // Put chunk_size of A in ts
 // Set size of int
 tplength = sizeof(int);
 // Set name of entry to chunk_size
 sprintf(tpname,"chunk_size",0);
 printf("Master: Putting chunk_size Length(%d) Name(%s)\n",
 tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, &chunk_size, tplength);

 // Put chunks of A in ts
 // Get Ai tuple size
 tplength = (2+chunk_size*N) * sizeof(double);
 printf("Master: Ai tplength = (%d)\n", tplength);

 // Prepare integer array rows for tuple space exchange
 if((rows = (double *) malloc(tplength)) == NULL)
 exit(1);
 printf("Master: Putting A in problem tuple space\n");

 // Build Ai array rows to send to ts
 // Set remaining to total number of rows
 remaining = N;
 // Set start matrix row to zero
 matrix_row = 0;
 // Loop until all numbers are sent to workers
 while (remaining > 0) {
 // If remaining rows is less than chunk size
 // set number of rows sent to remaining rows
 if (remaining < chunk_size)
 chunk_size = remaining;
 // Subtract rows being sent from remaining rows
 remaining = remaining - chunk_size;
 printf("Master: chunk_size(%d) remaining(%d) \n",
 chunk_size, remaining);
 // Put chunk_size in first index
 rows[0] = chunk_size;
 // Set rows array position to 2
 // Second position (1) is reserved for
 // time returned by worker
 array_pos = 2;
 // Put rows of A matrix in rows array
 for (i=0; i<chunk_size; i++){
 for (j=0; j<N; j++){
 rows[array_pos] = A[matrix_row+i][j];
 if(N <= 36)
 printf(" %g", rows[array_pos]);
 array_pos++;

Synergy User Manual and Tutorial

175

 }
 if(N <= 36)
 printf("\n");
 }
 // Set entry name to beginning Ai-row
 sprintf(tpname,"A%d",matrix_row);
 status = cnf_tsput(tsd, tpname, rows, tplength);
 matrix_row += chunk_size;
 }

 // Get the result Ci from ts and assemble
 // Set received rows to zero
 remaining = N;
 // Initialize worker time
 worker_time = 0;
 // Loop until all rows are recieved
 while(remaining > 0){
 // Set entry name
 strcpy(tpname,"*");
 // Get entry from result tuple space
 tplength = cnf_tsget(res, tpname, rows, 0);
 // Get number rows in this chunk from last index
 chunk_size = rows[0];
 // Get time returned by worker
 worker_time += rows[1];
 // Convert beginning row of entry to an integer
 matrix_row = atoi(tpname);
 printf("Master: Recieved %s Size %d\n", tpname, chunk_size);
 // Set the position in the array to 2
 array_pos = 2;

 // Assemble the result matrix C
 // Loop through recieved rows
 printf("Master: Recieved\n");
 for (i= 0; i<chunk_size; i++){
 // Increment rows recieved by decrementing remaining
 remaining--;
 // Loop through row and array elements
 for (j=0; j<N; j++){
 C[matrix_row][j] = rows[array_pos];
 if(N <= 36)
 printf(" %g", C[matrix_row][j]);
 // Increment array position
 array_pos++;
 }
 if(N <= 36)
 printf("\n");
 // Increment row position
 matrix_row++;
 }
 }

 // Resolve total time
 total_time = wall_clock() - total_time;
 printf("Master: The multiplication took %g seconds total time\n",
 (total_time/1000000.0));

Synergy User Manual and Tutorial

176

 // Resolve worker time
 printf("Master: The workers used %g seconds of processor time\n",
 (worker_time/1000000.0));

 // Check and print the C matrix
 if(N <= 36)
 printDblMat(C, 'C');
 checkDblIdenMat(C, 'C');

 // Insert termination signal
 // Set length of entry
 tplength = sizeof(double);
 // Set entry value
 i = -1;
 // Set entry name
 strcpy(tpname, "A-term");
 // Send entry to tuple space
 status = cnf_tsput(tsd, tpname, &i, tplength);

 // Free memory for rows array
 free(rows);

 // Terminate program
 printf("Master: Terminated\n");
 cnf_term();
}

The following is the tuple space “matrix multiplication” worker program implemented by
sending work in chunks:

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>

#include "matrix.h"

double B[N][N]; // B matrix
double Ai[N]; // N length row of A

main(){

 int chunk_size; // Chunk size
 int remaining; // Remaining arrays of work
 int i, j; // Matrix indices
 int n; // Counter for rows in chunk
 int matrix_row; // Index of matrix row
 int array_get; // Get array position in rows array
 int array_put; // Put array position in rows array
 int status; // Return status for tuple operations
 int res; // Result tuple space identifier
 int tsd; // Problem tuple space identifier
 double *rows; // Rows from A to send to worker
 double worker_time; // Time to return to master

Synergy User Manual and Tutorial

177

 int tplength; // Length of ts entry
 char tpname[20]; // Identifier of ts entry
 char host[128]; // Host machine name

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Worker: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem", 0);
 // Open result tuple space
 res = cnf_open("result", 0);
 printf("Worker: Tuple spaces open complete\n");

 // Set tpname to B
 strcpy(tpname,"B");
 // Read matrix B from tuple space
 status = cnf_tsread(tsd, tpname, B, 0);

 // Print matrix B
 if(N <= 36)
 printDblMat(B, 'B');

 // Get chunk_size from master
 // Set tpname to chunk_size
 strcpy(tpname,"chunk_size");
 // Read chunk_size from tuple space
 status = cnf_tsread(tsd, tpname, &chunk_size, 0);

 // Prepare integer array for tuple space exchanges
 tplength = (1+chunk_size*N)*sizeof(double);
 if ((rows = (double*)malloc(tplength)) == NULL)
 exit(-1);

 // Loop until terminal signal is recieved
 while(1){
 // Set entry name
 strcpy(tpname,"A*");
 // Set length of entry
 tplength = cnf_tsget(tsd, tpname, rows, 0);

 // Normal recieve
 if(tplength > 0){
 // Check termination signal
 if (!strcmp(tpname, "A-term")){
 printf("Worker: Recieved the terminal signal\n");
 // Replace the terminal signal in problem ts
 status = cnf_tsput(tsd, tpname, rows, tplength);
 // Free memory for rows
 free(rows);
 // Terminate worker
 printf("Worker: Terminated\n");
 cnf_term();
 }
 // Get number rows in this chunk from last index

Synergy User Manual and Tutorial

178

 chunk_size = rows[0];
 // Convert beginning row of entry to an integer
 matrix_row = atoi(&tpname[1]);
 printf("Worker: chunk_size %d matrix_row %d\n",
 chunk_size, matrix_row);

 // Set rows array put position to 2
 array_put = 2;
 // Set rows array get position to 2
 array_get = 2;

 // Get beginning worker time
 worker_time = wall_clock();

 // For each row in chunk_size
 for(n=0; n<chunk_size; n++){
 // Copy a row from rows to Ai
 // and print to screen
 if(N <= 36)
 printf("Worker: Recieved\n");
 for(i=0; i<N; i++){
 Ai[i] = rows[array_get];
 rows[array_get++] = 0;
 if(N <= 36)
 printf(" %g", Ai[i]);
 }
 if(N <= 36)
 printf("\n");
 // Multiply rows in place with B
 // For each column of B
 if(N <= 100)
 printf("Worker: Calculated array C%s+%d\n", tpname, n);
 for (i=0; i<N; i++){
 // For each element in Ai and each
 // element in this column of B multiply
 // producing an element in rows
 for (j=0; j<N; j++){
 rows[array_put] += Ai[j] * B[j][i];
 }
 if(N <= 36)
 printf(" %g", rows[array_put]);
 // Increment to next position in rows
 array_put++;
 }
 if(N <= 36)
 printf("\n");
 }

 // Put worker time in rows array
 rows[1] = wall_clock() - worker_time;
 // Set length of entry
 tplength = (2+chunk_size*N)*sizeof(double);
 // Set tpname to first row number in rows
 sprintf(tpname,"%d", matrix_row);
 printf("Worker: Putting %s\n",tpname);
 // Put the result in the result tuple space

Synergy User Manual and Tutorial

179

 status = cnf_tsput(res, tpname, rows, tplength);
 if(N <= 36)
 sleep(1);
 }

 else{
 printf("Worker: Recieved a zero length entry\n");
 // Free memory for rows
 free(rows);
 // Terminate worker
 printf("Worker Terminated\n");
 cnf_term();
 }
 }
}

To run the matrix multiplication distributed application with chunk size of 4 and N = 10
(a 10 x 10 matrix):

1. Set the factor value in the csl file to 4 (as shown below)
2. Make the executables by typing “make SIZE=10” and pressing the enter key.
3. Run the application by typing “prun tupleSum2” and pressing the enter key.

configuration: tupleMat2;

m: master = tupleMat2Master
 (factor = 4
 threshold = 1
 debug = 0
)
 -> f: problem
 (type = TS)
 -> m: worker = tupleMat2Worker
 (type = slave)
 -> f: result
 (type = TS)
 -> m: master;

The screen output for the master terminal with Synergy’s initialization and termination
output removed should resemble:

[c615111@owin ~/fpc07new]>prun tupleMat2
Master: Opening tuple spaces
Master: Tuple spaces open complete
Master: Processors 2
Master: Chunk size 4
Master: Starting C = A . B
 on 10 x 10 matrices
The B double matrix
 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 0 0 1 -1

Synergy User Manual and Tutorial

180

 0 0 0 0 0 0 0 1 -1 0
 0 0 0 0 0 0 1 -1 0 0
 0 0 0 0 0 1 -1 0 0 0
 0 0 0 0 1 -1 0 0 0 0
 0 0 0 1 -1 0 0 0 0 0
 0 0 1 -1 0 0 0 0 0 0
 0 1 -1 0 0 0 0 0 0 0
 1 -1 0 0 0 0 0 0 0 0
Master: Putting B Length(800) Name(B)
The A double matrix
 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 0
 1 1 1 1 1 1 1 1 0 0
 1 1 1 1 1 1 1 0 0 0
 1 1 1 1 1 1 0 0 0 0
 1 1 1 1 1 0 0 0 0 0
 1 1 1 1 0 0 0 0 0 0
 1 1 1 0 0 0 0 0 0 0
 1 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 0
Master: Putting chunk_size Length(4) Name(chunk_size)
Master: Ai tplength = (336)
Master: Putting A in problem tuple space
Master: chunk_size(4) remaining(6)
 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 0
 1 1 1 1 1 1 1 1 0 0
 1 1 1 1 1 1 1 0 0 0
Master: chunk_size(4) remaining(2)
 1 1 1 1 1 1 0 0 0 0
 1 1 1 1 1 0 0 0 0 0
 1 1 1 1 0 0 0 0 0 0
 1 1 1 0 0 0 0 0 0 0
Master: chunk_size(2) remaining(0)
 1 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 0 0 0 0 0
Worker: Opening tuple spaces
Worker: Tuple spaces open complete
The B double matrix
 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 0 0 1 -1
 0 0 0 0 0 0 0 1 -1 0
 0 0 0 0 0 0 1 -1 0 0
 0 0 0 0 0 1 -1 0 0 0
 0 0 0 0 1 -1 0 0 0 0
 0 0 0 1 -1 0 0 0 0 0
 0 0 1 -1 0 0 0 0 0 0
 0 1 -1 0 0 0 0 0 0 0
 1 -1 0 0 0 0 0 0 0 0
Worker: chunk_size 4 matrix_row 4
Worker: Recieved
 1 1 1 1 1 1 0 0 0 0
Worker: Calculated array CA4+0
 0 0 0 0 1 0 0 0 0 0
Worker: Recieved
 1 1 1 1 1 0 0 0 0 0

Synergy User Manual and Tutorial

181

Worker: Calculated array CA4+1
 0 0 0 0 0 1 0 0 0 0
Worker: Recieved
 1 1 1 1 0 0 0 0 0 0
Worker: Calculated array CA4+2
 0 0 0 0 0 0 1 0 0 0
Worker: Recieved
 1 1 1 0 0 0 0 0 0 0
Worker: Calculated array CA4+3
 0 0 0 0 0 0 0 1 0 0
Worker: Putting 4
Master: Recieved 4 Size 4
Master: Recieved
 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 1 0 0
Master: Recieved 0 Size 4
Master: Recieved
 1 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0
Worker: chunk_size 2 matrix_row 8
Worker: Recieved
 1 1 0 0 0 0 0 0 0 0
Worker: Calculated array CA8+0
 0 0 0 0 0 0 0 0 1 0
Worker: Recieved
 1 0 0 0 0 0 0 0 0 0
Worker: Calculated array CA8+1
 0 0 0 0 0 0 0 0 0 1
Worker: Putting 8
Master: Recieved 8 Size 2
Master: Recieved
 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 0 0 1
Master: The multiplication took 1.11439 seconds total time
Master: The workers used 0.024033 seconds of processor time
The C double matrix
 1 0 0 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 0
 0 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 0 0 1
Master: C is Identity Matrix
Master: Terminated
Worker: Recieved the terminal signal
Worker: Terminated
== (tupleMat2) completed. Elapsed [2] Seconds.
[c615111@owin ~/fpc07new]>

Synergy User Manual and Tutorial

182

The screen output for the worker terminal with Synergy’s initialization and termination
output removed should resemble:

Worker: Opening tuple spaces
Worker: Tuple spaces open complete
The B double matrix
 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 0 0 1 -1
 0 0 0 0 0 0 0 1 -1 0
 0 0 0 0 0 0 1 -1 0 0
 0 0 0 0 0 1 -1 0 0 0
 0 0 0 0 1 -1 0 0 0 0
 0 0 0 1 -1 0 0 0 0 0
 0 0 1 -1 0 0 0 0 0 0
 0 1 -1 0 0 0 0 0 0 0
 1 -1 0 0 0 0 0 0 0 0
Worker: chunk_size 4 matrix_row 0
Worker: Recieved
 1 1 1 1 1 1 1 1 1 1
Worker: Calculated array CA0+0
 1 0 0 0 0 0 0 0 0 0
Worker: Recieved
 1 1 1 1 1 1 1 1 1 0
Worker: Calculated array CA0+1
 0 1 0 0 0 0 0 0 0 0
Worker: Recieved
 1 1 1 1 1 1 1 1 0 0
Worker: Calculated array CA0+2
 0 0 1 0 0 0 0 0 0 0
Worker: Recieved
 1 1 1 1 1 1 1 0 0 0
Worker: Calculated array CA0+3
 0 0 0 1 0 0 0 0 0 0
Worker: Putting 0
Worker: Recieved the terminal signal
Worker: Terminated

To run the matrix multiplication distributed application with chunk size of 200 and N =
500 (a 500 x 500 matrix):

1. Set the factor value in the csl file to 200 (as shown below)
2. Make the executables by typing “make SIZE=500” and pressing the enter key.
3. Run the application by typing “prun tupleMat2” and pressing the enter key.

configuration: tupleMat2;

m: master = tupleMat2Master
 (factor = 200
 threshold = 1
 debug = 0

Synergy User Manual and Tutorial

183

)
 -> f: problem
 (type = TS)
 -> m: worker = tupleMat2Worker
 (type = slave)
 -> f: result
 (type = TS)
 -> m: master;

The screen output for the master terminal with Synergy’s initialization and termination
output removed should resemble:

[c615111@owin ~/fpc07new]>prun tupleMat2
Master: Opening tuple spaces
CID starting program. path (bin/tupleMat2Worker)
Master: Tuple spaces open complete
Master: Processors 2
Master: Chunk size 200
Master: Starting C = A . B
 on 500 x 500 matrices
Master: Putting B Length(2000000) Name(B)
Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Master: Putting chunk_size Length(4) Name(chunk_size)
Master: Ai tplength = (800016)
Master: Putting A in problem tuple space
Master: chunk_size(200) remaining(300)
Master: chunk_size(200) remaining(100)
Worker: chunk_size 200 matrix_row 200
Master: chunk_size(100) remaining(0)
Worker: Putting 200
Master: Recieved 0 Size 200
Master: Recieved
Master: Recieved 200 Size 200
Master: Recieved
Master: Recieved 400 Size 100
Master: Recieved
Master: The multiplication took 9.66808 seconds total time
Master: The workers used 15.0322 seconds of processor time
Master: C is Identity Matrix
Worker: Recieved the terminal signal
Master: Terminated
Worker: Terminated
== (tupleMat2) completed. Elapsed [10] Seconds.
 [c615111@owin ~/fpc07new]>

The screen output for the worker terminal with Synergy’s initialization and termination
output removed should resemble:

Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: chunk_size 200 matrix_row 0
Worker: Putting 0

Synergy User Manual and Tutorial

184

Worker: chunk_size 100 matrix_row 400
Worker: Putting 400
Worker: Recieved the terminal signal
Worker: Terminated

Synergy User Manual and Tutorial

185

Optimized Programs

Optimized Matrix Multiplication with Chunking

The following is the tuple space “optimized matrix multiplication” master program
implemented by sending work in chunks:

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>

// The A matrix to break up into arrays
// and send to workers
double A[N][N];
double B[N][N];
double C[N][N];

#include "matrix.h"

// Main function
main(){

 int processors; // Number of processors
 int chunk_size; // Chunk size
 int remaining; // Remaining arrays of work
 int i, j; // Matrix indices
 int matrix_row; // Index of matrix row
 int array_pos; // Array position in rows array
 int status; // Return status for tuple operations
 int res; // Result tuple space identifier
 int tsd; // Problem tuple space identifier
 double *rows; // Rows from A to send to worker
 double worker_time; // Sum of times returned by workers
 double total_time; // Total application run time
 int tplength; // Length of ts entry
 char tpname[20]; // Identifier of ts entry
 char host[128]; // Host machine name

 // Get host machine name
 gethostname(host, sizeof(host));

 // Get time stamp
 total_time = wall_clock();

 // Open tuple spaces
 printf("Master: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem",0);
 // Open result tuple space
 res = cnf_open("result",0);
 printf("Master: Tuple spaces open complete\n");

Synergy User Manual and Tutorial

186

 // Get number of processors
 processors = cnf_getP();
 printf("Master: Processors %d\n", processors);
 // Get chunk size
 chunk_size = cnf_getf();
 printf("Master: Chunk size %d\n",
 chunk_size);

 printf("Master: Starting C = A . B\n");
 printf(" on %d x %d matrices\n", N, N);

 // Create and print matrix B
 makeDblInv(B);
 if(N <= 36)
 printDblMat(B, 'B');

 // Put B matrix in ts
 // Set size of B matrix
 tplength = N*N*sizeof(double);
 // Set name of entry to B
 sprintf(tpname,"B",0);
 printf("Master: Putting B Length %d Name %s\n",
 tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, B, tplength);

 // Create and print matrix A
 makeDblMat(A);
 if(N <= 36)
 printDblMat(A, 'A');

 // Put chunk_size of A in ts
 // Set size of int
 tplength = sizeof(int);
 // Set name of entry to chunk_size
 sprintf(tpname,"chunk_size",0);
 printf("Master: Putting chunk_size Length %d Name %s\n",
 tplength, tpname);
 // Put entry in tuple space
 status = cnf_tsput(tsd, tpname, &chunk_size, tplength);

 // Put chunks of A in ts
 // Get Ai tuple size
 tplength = (2+chunk_size*N) * sizeof(double);
 printf("Master: Ai tplength = (%d)\n", tplength);

 // Prepare integer array rows for tuple space exchange
 if((rows = (double *) malloc(tplength)) == NULL)
 exit(1);
 printf("Master: Putting A in problem tuple space\n");

 // Build Ai array rows to send to ts
 // Set remaining to total number of rows
 remaining = N;
 // Set start matrix row to zero

Synergy User Manual and Tutorial

187

 matrix_row = 0;
 // Loop until all numbers are sent to workers
 while (remaining > 0) {
 // If remaining rows is less than chunk size
 // set number of rows sent to remaining rows
 if (remaining < chunk_size)
 chunk_size = remaining;
 // Subtract rows being sent from remaining rows
 remaining = remaining - chunk_size;
 // Set rows array position to 2
 // Second position (1) is reserved for
 // time returned by worker
 array_pos = 2;
 // Put chunk_size in last index
 rows[0] = chunk_size;
 // Put rows of A matrix in rows array
 for (i=0; i<chunk_size; i++){
 for (j=0; j<N; j++){
 rows[array_pos] = A[matrix_row+i][j];
 if(N <= 36)
 printf(" %g", rows[array_pos]);
 array_pos++;
 }
 if(N <= 36)
 printf("\n");
 }
 // Set entry name to beginning Ai-row
 sprintf(tpname,"A%d",matrix_row);
 printf("Master: Putting chunk_size %d matrix_row %s remaining %d\n",
 chunk_size, tpname, remaining);
 status = cnf_tsput(tsd, tpname, rows, tplength);
 matrix_row += chunk_size;
 }

 printf("Master: All work has been sent\n");

 // Get the result Ci from ts and assemble
 // Set received rows to N
 remaining = N;
 // Initialize worker time
 worker_time = 0;
 // Loop until all rows are recieved
 while(remaining > 0){
 // Set entry name
 strcpy(tpname,"*");
 // Get entry from result tuple space
 tplength = cnf_tsget(res, tpname, rows, 0);
 // Get number rows in this chunk from last index
 chunk_size = rows[0];
 // Get time returned by worker
 worker_time += rows[1];
 // Convert beginning row of entry to an integer
 matrix_row = atoi(tpname);
 printf("Master: Recieved chunk_sizs %d matrix_row %s\n",
 chunk_size, tpname);

Synergy User Manual and Tutorial

188

 // Set the position in the array to 2
 array_pos = 2;

 // Assemble the result matrix C
 // Loop through recieved rows
 if(N <= 36)
 printf("Master: Recieved\n");
 for (i= 0; i<chunk_size; i++){
 // Increment rows recieved by decrementing remaining
 remaining--;
 // Loop through row and array elements
 for (j=0; j<N; j++){
 C[matrix_row][j] = rows[array_pos];
 if(N <= 36)
 printf(" %g", C[matrix_row][j]);
 // Increment array position
 array_pos++;
 }
 if(N <= 36)
 printf("\n");
 // Increment row position
 matrix_row++;
 }
 }

 printf("Master: Recieved all work from workers\n");
 printf("Master: C matrix has been assembled\n");

 // Resolve total time
 total_time = wall_clock() - total_time;
 printf("Master: The multiplication took %g seconds total time\n",
 (total_time/1000000.0));

 // Resolve worker time
 printf("Master: The workers used %g seconds of processor time\n",
 (worker_time/1000000.0));

 // Check and print the C matrix
 if(N <= 36)
 printDblMat(C, 'C');
 checkDblIdenMat(C, 'C');

 // Insert termination signal
 // Set length of entry
 tplength = sizeof(double);
 // Set entry value
 i = -1;
 // Set entry name
 strcpy(tpname, "A-term");
 // Send entry to tuple space
 status = cnf_tsput(tsd, tpname, &i, tplength);

 // Free memory for rows array
 free(rows);

 // Terminate program

Synergy User Manual and Tutorial

189

 printf("Master: Terminated\n");
 cnf_term();
}

The following is the tuple space “optimized matrix multiplication” worker program
implemented by sending work in chunks:

#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>

double Ai[N/2][N]; // A chunk of A matrix
double B[N][N]; // B matrix
double Ci[N/2][N]; // A chunk of C matrix

#include "matrix.h"

// Main function
main(){

 int chunk_size; // Chunk size
 int i, j, k; // Matrix indices
 int matrix_row; // Index of matrix row
 int array_pos; // Get array position in rows array
 int status; // Return status for tuple operations
 int res; // Result tuple space identifier
 int tsd; // Problem tuple space identifier
 double *rows; // Rows from A
 double worker_time; // Time to return to master
 int tplength; // Length of ts entry
 char tpname[20]; // Identifier of ts entry
 char host[128]; // Host machine name

 // Get host machine name
 gethostname(host, sizeof(host));

 // Open tuple spaces
 printf("Worker: Opening tuple spaces\n");
 // Open problem tuple space
 tsd = cnf_open("problem", 0);
 // Open result tuple space
 res = cnf_open("result", 0);
 printf("Worker: Tuple spaces open complete\n");

 // Set tpname to B
 strcpy(tpname,"B");
 // Read matrix B from tuple space
 status = cnf_tsread(tsd, tpname, B, 0);

 // Print matrix B
 if(N <= 36)
 printDblMat(B, 'B');

Synergy User Manual and Tutorial

190

 // Get chunk_size from master
 // Set tpname to chunk_size
 strcpy(tpname,"chunk_size");
 // Read chunk_size from tuple space
 status = cnf_tsread(tsd, tpname, &chunk_size, 0);

 // Prepare integer array for tuple space exchanges
 tplength = (2+chunk_size*N)*sizeof(double);
 if ((rows = (double*)malloc(tplength)) == NULL)
 exit(-1);

 // Loop until terminal signal is recieved
 while(1){
 // Set entry name to any begins with A
 strcpy(tpname,"A*");
 // Set length of entry
 tplength = cnf_tsget(tsd, tpname, rows, 0);
 // Normal recieve
 if(tplength > 0){
 // Check termination signal
 if (!strcmp(tpname, "A-term")){
 printf("Worker: Recieved the terminal signal\n");
 // Replace the terminal signal in problem ts
 status = cnf_tsput(tsd, tpname, rows, tplength);
 // Free memory for rows
 free(rows);
 // Terminate worker
 printf("Worker: Terminated\n");
 cnf_term();
 }
 // Get number rows in this chunk from last index
 chunk_size = (int)rows[0];
 // Convert beginning row of entry to an integer
 matrix_row = atoi(&tpname[1]);
 printf("Worker: Recieved chunk_size %d matrix_row %d\n",
 chunk_size, matrix_row);

 // Get beginning worker time
 worker_time = wall_clock();

 // For each row in chunk_size
 // Copy rows from rows to Ai
 for(i=0; i<chunk_size; i++)
 for(j=0; j<N; j++){
 Ai[i][j] = rows[i*N+j+2];
 Ci[i][j] = 0;
 }

 // Perform multiplication
 for(i=0; i<chunk_size; i++)
 for(k=0; k<N; k++)
 for(j=0; j<N; j++)
 Ci[i][j] += Ai[i][k]*B[k][j];

 // For each row in chunk_size
 // Copy rows from Ci to rows

Synergy User Manual and Tutorial

191

 for(i=0; i<chunk_size; i++){
 for(j=0; j<N; j++)
 rows[i*N+j+2] = Ci[i][j];
 }

 // Put worker time in rows array
 rows[1] = wall_clock() - worker_time;
 // Set tpname to first row number in rows
 sprintf(tpname,"%d", matrix_row);
 printf("Worker: Putting chunk_size %d matrix_row %s\n",
 chunk_size, tpname);
 // Put the result in the result tuple space
 status = cnf_tsput(res, tpname, rows, tplength);
 }

 else{
 printf("Worker: Recieved a zero length entry\n");
 // Free memory for rows
 free(rows);
 // Terminate worker
 printf("Worker Terminated\n");
 cnf_term();
 }
 }
}

To run the matrix multiplication distributed application with chunk size of 200 and N =
500 (a 500 x 500 matrix):

1. Set the factor value in the csl file to 200 (as shown below)
2. Make the executables by typing “make SIZE=500” and pressing the enter key.
3. Run the application by typing “prun tupleMat3” and pressing the enter key.

configuration: tupleMat3;

m: master = tupleMat3Master
 (factor = 200
 threshold = 1
 debug = 0
)
 -> f: problem
 (type = TS)
 -> m: worker = tupleMat3Worker
 (type = slave)
 -> f: result
 (type = TS)
 -> m: master;

The screen output for the master terminal with Synergy’s initialization and termination
output removed should resemble:

Synergy User Manual and Tutorial

192

Master: Opening tuple spaces
Master: Tuple spaces open complete
Master: Processors 2
Master: Chunk size 200
Master: Starting C = A . B
 on 500 x 500 matrices
Master: Putting B Length 2000000 Name B
Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Master: Putting chunk_size Length 4 Name chunk_size
Master: Ai tplength = (800016)
Master: Putting A in problem tuple space
Master: Putting chunk_size 200 matrix_row A0 remaining 300
Master: Putting chunk_size 200 matrix_row A200 remaining 100
Worker: Recieved chunk_size 200 matrix_row 200
Master: Putting chunk_size 100 matrix_row A400 remaining 0
Master: All work has been sent
Master: Recieved chunk_sizs 200 matrix_row 0
Worker: Putting chunk_size 200 matrix_row 200
Master: Recieved chunk_sizs 200 matrix_row 200
Master: Recieved chunk_sizs 100 matrix_row 400
Master: Recieved all work from workers
Master: C matrix has been assembled
Master: The multiplication took 4.39389 seconds total time
Master: The workers used 6.23962 seconds of processor time
Master: C is Identity Matrix
Master: Terminated
Worker: Recieved the terminal signal
Worker: Terminated
== (tupleMat3) completed. Elapsed [4] Seconds.
[c615111@owin ~/fpc08]>

The screen output for the worker terminal with Synergy’s initialization and termination
output removed should resemble:

Worker: Opening tuple spaces
Worker: Tuple spaces open complete
Worker: Recieved chunk_size 200 matrix_row 0
Worker: Putting chunk_size 200 matrix_row 0
Worker: Recieved chunk_size 100 matrix_row 400
Worker: Putting chunk_size 100 matrix_row 400
Worker: Recieved the terminal signal
Worker: Terminated

Synergy User Manual and Tutorial

193

Synergy in the Future

Synergy User Manual and Tutorial

194

Function and Command Reference

Commands

addhost

This command adds a host into the host file. The command fails if the given host is not
Synergy capable. The [-f] option forces the insertion even if the host is not ready. A
newly added host automatically becomes “selected”.

Syntax:

[c615111@owin ~]>addhost <hostname> [-f]

cds

Checks the status of remote daemons. This command prints all available remote hosts to
screen and shows their benchmark, name and availability.

Example:

[c615111@owin ~]>cds
++ Benchmark (186) ++ (owin) ready.
++ Benchmark (2077) ++ (rancor) ready.
++ Benchmark (2109) ++ (saber) ready.
++ Benchmark (1497) ++ (sarlac) ready.
++ Benchmark (186) ++ (lynox) ready.
[c615111@luke ~]>

[c615111@owin ~]>cds
 ????? PMD down (129.32.92.82,ewok)
 ????? CID down (129.32.92.66,luke) (c615111)
 ????? CID down (129.32.92.89,ackbar) (c615111)
 ????? CID down (129.32.92.69,r2d2) (c615111)
[c615111@luke ~]>

[c615111@luke ~]>cds
 ????? PMD down (129.32.92.82,ewok)
++ Benchmark (371) ++ (luke) ready.
 ????? CID down (129.32.92.89,ackbar) (c615111)
 ????? CID down (129.32.92.69,r2d2) (c615111)
[c615111@luke ~]>

Synergy User Manual and Tutorial

195

chosts

This command allows you to toggle the selected and de-selected status of processors.
Only the selected processors will be used for immediate parallel processing. The -v
option gives the current Synergy connection status. It requires some extra time.

Syntax:

[c615111@owin ~]>chosts [-v]

Example:

 Synergy V3.0 : Host Selection Utility
=Status=No.===IP Address=================Host Name==============Login=F Sys.=
[-----] (1) #129.32.92.82 ewok c615111 none
[-----] (2) #129.32.92.66 luke c615111 none
[-----] (3) #129.32.92.89 ackbar c615111 none
[-----] (4) #129.32.92.69 r2d2 c615111 none
[-----] (5) #129.32.92.87 alliance c615111 none
[-----] (6) #129.32.92.91 anakin c615111 none
[-----] (7) #129.32.92.78 bantha c615111 none
[-----] (8) #129.32.92.74 bobafet c615111 none
[-----] (9) #129.32.92.80 c3p0 c615111 none
[-----] (10) #129.32.92.88 chewbaca c615111 none
[-----] (11) #129.32.92.86 droids c615111 none
[-----] (12) #129.32.92.68 emperor c615111 none
[-----] (13) #129.32.92.77 gredo c615111 none
[-----] (14) #129.32.92.71 jabba c615111 none
[-----] (15) #129.32.92.76 jawa c615111 none
[-----] (16) #129.32.92.83 lando c615111 none
[-----] (17) #129.32.92.84 leia c615111 none
[-----] (18) #129.32.92.81 owin c615111 none
[-----] (19) #129.32.92.70 rancor c615111 none
 === Enter s(elect) | d(e-select) | c(ontinue):

[-----] (3) #129.32.92.89 ackbar c615111 none
[-----] (4) #129.32.92.69 r2d2 c615111 none
[-----] (5) #129.32.92.87 alliance c615111 none
[-----] (6) #129.32.92.91 anakin c615111 none
[-----] (7) #129.32.92.78 bantha c615111 none
[-----] (8) #129.32.92.74 bobafet c615111 none
[-----] (9) #129.32.92.80 c3p0 c615111 none
[-----] (10) #129.32.92.88 chewbaca c615111 none
[-----] (11) #129.32.92.86 droids c615111 none
[-----] (12) #129.32.92.68 emperor c615111 none
[-----] (13) #129.32.92.77 gredo c615111 none
[-----] (14) #129.32.92.71 jabba c615111 none

Synergy User Manual and Tutorial

196

[-----] (15) #129.32.92.76 jawa c615111 none
[-----] (16) #129.32.92.83 lando c615111 none
[-----] (17) #129.32.92.84 leia c615111 none
[-----] (18) #129.32.92.81 owin c615111 none
[-----] (19) #129.32.92.70 rancor c615111 none
 === Enter s(elect) | d(e-select) | c(ontinue): s
 === Host From (0 to continue) #: 1
 To #: 4
 (129.32.92.82 ewok) selected.
 (129.32.92.66 luke) selected.
 (129.32.92.89 ackbar) selected.
 (129.32.92.69 r2d2) selected.
 === Enter s(elect) | d(e-select) | c(ontinue):

 Synergy V3.0 : Host Selection Utility
=Status=No.===IP Address=================Host Name==============Login=F Sys.=
[-----] (1) 129.32.92.82 ewok c615111 none
[-----] (2) 129.32.92.66 luke c615111 none
[-----] (3) 129.32.92.89 ackbar c615111 none
[-----] (4) 129.32.92.69 r2d2 c615111 none
[-----] (5) #129.32.92.87 alliance c615111 none
[-----] (6) #129.32.92.91 anakin c615111 none
[-----] (7) #129.32.92.78 bantha c615111 none
[-----] (8) #129.32.92.74 bobafet c615111 none
[-----] (9) #129.32.92.80 c3p0 c615111 none
[-----] (10) #129.32.92.88 chewbaca c615111 none
[-----] (11) #129.32.92.86 droids c615111 none
[-----] (12) #129.32.92.68 emperor c615111 none
[-----] (13) #129.32.92.77 gredo c615111 none
[-----] (14) #129.32.92.71 jabba c615111 none
[-----] (15) #129.32.92.76 jawa c615111 none
[-----] (16) #129.32.92.83 lando c615111 none
[-----] (17) #129.32.92.84 leia c615111 none
[-----] (18) #129.32.92.81 owin c615111 none
[-----] (19) #129.32.92.70 rancor c615111 none
 === Enter s(elect) | d(e-select) | c(ontinue):

[-----] (1) 129.32.92.82 ewok c615111 none
[-----] (2) 129.32.92.66 luke c615111 none
[-----] (3) 129.32.92.89 ackbar c615111 none
[-----] (4) 129.32.92.69 r2d2 c615111 none
[-----] (5) #129.32.92.87 alliance c615111 none
[-----] (6) #129.32.92.91 anakin c615111 none
[-----] (7) #129.32.92.78 bantha c615111 none
[-----] (8) #129.32.92.74 bobafet c615111 none
[-----] (9) #129.32.92.80 c3p0 c615111 none
[-----] (10) #129.32.92.88 chewbaca c615111 none
[-----] (11) #129.32.92.86 droids c615111 none
[-----] (12) #129.32.92.68 emperor c615111 none
[-----] (13) #129.32.92.77 gredo c615111 none
[-----] (14) #129.32.92.71 jabba c615111 none
[-----] (15) #129.32.92.76 jawa c615111 none
[-----] (16) #129.32.92.83 lando c615111 none

Synergy User Manual and Tutorial

197

[-----] (17) #129.32.92.84 leia c615111 none
[-----] (18) #129.32.92.81 owin c615111 none
[-----] (19) #129.32.92.70 rancor c615111 none
 === Enter s(elect) | d(e-select) | c(ontinue): d
 === Host From (0 to continue) #: 2
 To #: 3
 (luke, #129.32.92.66) de-selected.
 (ackbar, #129.32.92.89) de-selected.
 === Enter s(elect) | d(e-select) | c(ontinue):

 Synergy V3.0 : Host Selection Utility
=Status=No.===IP Address=================Host Name==============Login=F Sys.=
[-----] (1) 129.32.92.82 ewok c615111 none
[-----] (2) #129.32.92.66 luke c615111 none
[-----] (3) #129.32.92.89 ackbar c615111 none
[-----] (4) 129.32.92.69 r2d2 c615111 none
[-----] (5) #129.32.92.87 alliance c615111 none
[-----] (6) #129.32.92.91 anakin c615111 none
[-----] (7) #129.32.92.78 bantha c615111 none
[-----] (8) #129.32.92.74 bobafet c615111 none
[-----] (9) #129.32.92.80 c3p0 c615111 none
[-----] (10) #129.32.92.88 chewbaca c615111 none
[-----] (11) #129.32.92.86 droids c615111 none
[-----] (12) #129.32.92.68 emperor c615111 none
[-----] (13) #129.32.92.77 gredo c615111 none
[-----] (14) #129.32.92.71 jabba c615111 none
[-----] (15) #129.32.92.76 jawa c615111 none
[-----] (16) #129.32.92.83 lando c615111 none
[-----] (17) #129.32.92.84 leia c615111 none
[-----] (18) #129.32.92.81 owin c615111 none
[-----] (19) #129.32.92.70 rancor c615111 none
 === Enter s(elect) | d(e-select) | c(ontinue):

cid

Example:

[c615111@luke ~]>cid &
[1] 23104
[c615111@luke ~]> CID HOST NAME (luke)
 Actual CID IP(129.32.92.66)

CID ready.
[c615111@owin ~]>

[c615111@owin ~]>cid &
[2] 240

Synergy User Manual and Tutorial

198

[c615111@owin ~]> CID HOST NAME (owin)
 Actual CID IP(129.32.92.81)

Found an old CID.
Removed an old CID
Reusing cid entry.
CID ready.
[c615111@owin ~]>

delhost

This command permanently deletes a host from the host file. It fails if the host is Synergy
ready. The [-f] option forces the removal.

Syntax:

[c615111@owin ~]>delhost <hostname> [-f]

Example:

dhosts

This command lets you permanently delete more than one host at a time. The -v option
will verify the hosts' current Synergy connection status (it takes some extra time).

Syntax:

[c615111@owin ~]>dhosts [-v]

Example:

kds

This command kills all remote daemons. It only kills the daemons started by your own
login. It will NOT kill daemons started by others.

pcheck

Utility to check and maintain running parallel programs

Synergy User Manual and Tutorial

199

Syntax:

[c615111@owin ~]>pcheck

Example:

pmd

Example:

[c615111@ewok ~]>pmd &
[1] 24172
[c615111@ewok ~]>

[c615111@luke ~]>pmd &
[2] 23106
[c615111@luke ~]>PMD already running.

[2] Exit 1 pmd
[c615111@luke ~]>

prun

Example:

[c615111@owin ~/example01]>prun tupleHello1
== Checking Processor Pool:
++ Benchmark (185) ++ (owin) ready.
++ Benchmark (1487) ++ (rancor) ready.
++ Benchmark (1482) ++ (saber) ready.
== Done.
== Parallel Application Console: (owin)
== CONFiguring: (tupleHello1.csl)
== Default directory: (/usr/classes/cis6151/c615111/example01)
++ Automatic program assignment: (worker)->(owin)
++ Automatic slave generation: (worker1)->(rancor)
++ Automatic slave generation: (worker2)->(saber)
++ Automatic program assignment: (master)->(owin)
++ Automatic object assignment: (problem)->(owin) pred(1) succ(3)
++ Automatic object assignment: (result)->(owin) pred(3) succ(1)
== Done.
== Starting Distributed Application Controller ...
Verifying process [|(c615111)|*/tupleHello1Worker

Synergy User Manual and Tutorial

200

Verifying process [|(c615111)|*/tupleHello1Worker
Verifying process [|(c615111)|*/tupleHello1Master
Verifying process [|(c615111)|*/tupleHello1Worker
** (tupleHello1.prcd) verified, all components executable.
** (tupleHello1.prcd) started.
== (tupleHello1) completed. Elapsed [5] Seconds.
[c615111@owin ~/example01]>

sds

This command starts daemons on selected hosts (defined in ~/.sng_hosts).

sfs

Example:

shosts

Example:

Synergy User Manual and Tutorial

201

Functions

cnf_close(id)

PURPOSE: Close all internal data structures according to type
PARAMETERS: int id – identifier of object to be closed
RETURNS: Nothing

cnf_dget(tpname, tpvalue, tpsize)

PURPOSE: Destructive read a tuple from a direct tuple space
PARAMETERS: char *tpname – the name of the object to be read from
 char *tpvalue – address of receiving buffer

 int tpsize – ?
RETURNS: int tpsize – the length of the data read in 8-bit bytes

cnf_dinit()

PURPOSE: Initializes the tid_list before each scatter operation
PARAMETERS: None
RETURNS: 1 always

cnf_dput(tsd, tid, tpname, tpvalue, tpsize)

PURPOSE: Inserts a typle into a direct tuple space
PARAMETERS: int tsd

long tpsize
char *tid
char *tpname
char *tpvalue

RETURNS: ?

cnf_dread(tpname, tpvalue, tpsize)

PURPOSE: Destructive read a tuple from a direct tuple space
PARAMETERS: int tpsize;

char *tpname;

Synergy User Manual and Tutorial

202

char *tpvalue;
RETURNS: int tpsize

cnf_dzap()

PURPOSE: Removes all local CID's tuples
PARAMETERS: None
RETURNS: 1 if success or an error code otherwise

cnf_eot(id)

PURPOSE: Marks the end of tasks
PARAMETERS: int id - ?
RETURNS: 1 if success or an error code otherwise

cnf_error(errno)

PURPOSE: Prints to the user the kind of error encountered
PARAMETERS: int errno
RETURNS: 1 always

cnf_fflush(id)

PURPOSE: Flushes a file
PARAMETERS: int id – index into cnf_map to get channel #/ptr
RETURNS: 1 if success or 0 if error

cnf_fgetc(id, buf)

PURPOSE: Read a char from file into buffer
PARAMETERS: int id – index into cnf_map to get channel #/ptr
 char *buf; – address of receiving buffer
RETURNS: 0 on EOF otherwise 1

int cnf_fgets(id, buf, bufsiz)

Synergy User Manual and Tutorial

203

PURPOSE: Read a line from file into buffer
PARAMETERS: int id – index into cnf_map to get channel #/ptr

char *buf – address of receiving buffer
int bufsiz – max size of receiving buffer

RETURNS: 0 if EOF otherwise number of bytes read

cnf_fputc(id, buf)

PURPOSE: Write a char from buffer to file
PARAMETERS: int id – index into cnf_map to get channel #/ptr

char buf – address of receiving buffer
RETURNS: 1 if success or 0 if error

cnf_fputs(id, buf, bufsiz)

PURPOSE: Write a line from buffer to file
PARAMETERS: int id – index into cnf_map to get channel #/ptr

char *buf – address of receiving buffer
int bufsiz – size of buffer

RETURNS: Number of bytes written or 0 if error

cnf_fread(id, buf, bufsiz, nitems)

PURPOSE: Read a 'record' from file into buffer
PARAMETERS: int id – index into cnf_map to get channel #/ptr

char *buf – address of receiving buffer
int bufsiz – max size of receiving buffer
int nitems – number of bufsiz blocks to read

RETURNS: 0 if EOF otherwise number of bytes read

cnf_fseek(id, from, offset)

PURPOSE: Set the reader pointer from "from" to "offset" in a file
PARAMETERS: int id – index into cnf_map to get channel #/ptr

int from
int offset

Synergy User Manual and Tutorial

204

RETURNS: 1 if success or 0 if error

cnf_fwrite(id, buf, bufsiz, nitems)

PURPOSE: Write a 'record' from buffer into file
PARAMETERS: int id – index into cnf_map to get channel #/ptr

char *buf – address of receiving buffer
int bufsiz – max size of receiving buffer
int nitems – number of bufsiz blocks to write

RETURNS: Number of bytes written or an error code on error

cnf_getarg(idx)

PURPOSE: Returns the runtime argument by index
PARAMETERS: int idx – the index
RETURNS: char * (idx'th argument)

cnf_getf()

PURPOSE: Returns the factor value for loop scheduling
PARAMETERS: None
RETURNS: f value (0..100] integer

cnf_getP()

PURPOSE: Returns the number of parallel workers
PARAMETERS: None
RETURNS: P value [1..N] integer

cnf_gett()

PURPOSE: Returns the threshold value for loop scheduling
PARAMETERS: None
RETURNS: t value [1..N) integer

Synergy User Manual and Tutorial

205

cnf_gts(tsd)

PURPOSE: Get all tid's processor assignments in one shot
PARAMETERS: int tsd - ?
RETURNS: 1 if success, 0 if no memory or an error code otherwise

cnf_init()

PURPOSE: Initializes sng_map_hd and sng_map using either the init file or

direct transmission from DAC. The init file's name is constructed
from the value of the logical name CNF_MODULE suffixed with
".ini".

PARAMETERS: None
RETURNS: Nothing if successful or an error code otherwise

cnf_open(local_name, mode)

PURPOSE: Lookup a pipe or tuple space object in sng_map structure, open a

channel to the physical address for that ref_name
PARAMETERS: char *local_name – local_name to find in cnf_map

char *mode – open modes: r,w,a,r+,w+,a+. Only for FILEs
RETURNS: int chan – an integer handle, if successful or an error code

otherwise. This is used like a usual Unix file handle.

cnf_print_map()

PURPOSE: ?
PARAMETERS: None
RETURNS: Nothing

cnf_read(id, buf, bufsiz)

PURPOSE: read a 'record' from file or pipe into buffer (starting at address

buff).
PARAMETERS: int id – index into cnf_map to get channel #/ptr

int bufsiz – max size of receiving buffer
char *buf – address of receiving buffer

Synergy User Manual and Tutorial

206

RETURNS: 0 on EOF otherwise number of bytes read

cnf_rmall(id)

PURPOSE: Destroy all tuples in a named tuple space
PARAMETERS: int id - ?
RETURNS: 0 if successful or an error code otherwise

cnf_sot(id)

PURPOSE: Marks the start of scantering of tasks
PARAMETERS: int id
RETURNS: 1 if successful or an error code otherwise

cnf_spzap(tsd)

PURPOSE: Removes all "retrieve" entries in TSH
PARAMETERS: int tsd - ?
RETURNS: 1 if successful or an error code otherwise

cnf_term()

PURPOSE: Called before image return to clean things up. Closes any files left

open.
PARAMETERS: None
RETURNS: Nothing

cnf_tget(tpname, tpvalue, tpsize)

PURPOSE: Destructive read a tuple from a named tuple space
PARAMETERS: int tpsize -

char *tpname -
char *tpvalue -

RETURNS: int tpsize – the size of the tuple received if successful or an error
code otherwise

Synergy User Manual and Tutorial

207

cnf_tsput(tpname, tpvalue, tpsize)

PURPOSE: Inserts a tuple into a named tuple space
PARAMETERS: int tpsize -

char *tpname -
char *tpvalue -

RETURNS: ? on success or an error code otherwise

cnf_tsread(tpname, tpvalue, tpsize)

PURPOSE: Read a tuple from a named tuple space
PARAMETERS: int tpsize -

char *tpname -
char *tpvalue -

RETURNS: int tpsize – the size of the tuple received if successful or an error
code otherwise

cnf_tsget(id, tpname, tpvalue, tpsize)

PURPOSE: Destructive read a tuple from a named tuple space
PARAMETERS: int id -

int tpsize -
char *tpname -
char *tpvalue -

RETURNS: int tpsize – the size of the tuple received if successful or an error
code otherwise

cnf_tsput(id, tpname, tpvalue, tpsize)

PURPOSE: Inserts a tuple into a named tuple space
PARAMETERS: int id -

int tpsize -
char *tpname -
char *tpvalue -

RETURNS: ? on success or an error code otherwise

Synergy User Manual and Tutorial

208

cnf_tsread(id, tpname, tpvalue, tpsize)

PURPOSE: Read a tuple from a named tuple space
PARAMETERS: int id -

int tpsize -
char *tpname -
char *tpvalue -

RETURNS: int tpsize – the size of the tuple received if successful or an error
code otherwise

cnf_write(id, buf, bytes)

PURPOSE: Send a 'record' to file (or mailbox or decnet channel) from buffer

(starting at address buff). bytes is the number of bytes to send. id
is the index into cnf_map global data structure where the actual
channel number or file pointer is stored.

PARAMETERS: int id – index into cnf_map for channel #/ptr
int bytes – number of bytes to send/write
char buf[] – address of message to send

RETURNS: 1 if successful or an error code otherwise

cnf_xdr_fgets(id, buf, bufsize, e_type)

PURPOSE: Read the external data representation of a line from file into buffer

(starting at address xdr_buff) and translates it to C language.
PARAMETERS: int id – The index into cnf_map global data structure where the

actual channel number or file pointer is stored
char *buf -
int bufsize – the number of bytes to read
int e_type -

RETURNS: 0 on EOF or number of bytes read on success otherwise an error
code on error

cnf_xdr_fputs(id, buf, bufsize, e_type)

PURPOSE: Translates a line to it's external data representation and sends it to

file from buffer (starting at address xdr_buff). .

Synergy User Manual and Tutorial

209

PARAMETERS: int id – The index into cnf_map global data structure where the
actual channel number or file pointer is stored
char *buf -
int bufsize – the number of bytes to send
int e_type -

RETURNS: int status - number of bytes written, 0 if error writing or an error
code otherwise

cnf_xdr_fread(id, buf, bufsize, nitems, e_type)

PURPOSE: Read the external data representation of a 'record' from file into

buffer (starting at address xdr_buff) and translates it to C language.
PARAMETERS: int id – The index into cnf_map global data structure where the

actual channel number or file pointer is stored
char *buf -
int bufsize – the number of bytes to read
int nitems -
int e_type -

RETURNS: int status - number of bytes read, 0 if error writing or an error code
otherwise

cnf_xdr_fwrite(id, buf, bufsize, nitems, e_type)

PURPOSE: Translates a 'record` to it's external data representation and sends it

to file from buffer (starting at address xdr_buff).
PARAMETERS: int id – The index into cnf_map global data structure where the

actual channel number or file pointer is stored
char *buf -
int bufsize – the number of bytes to send
int nitems -
int e_type -

RETURNS: Number of bytes written or an error code or -1 on error

cnf_xdr_read(id, buf, bufsize, e_type)

PURPOSE: Read the external data representation of a 'record' from file or pipe

into buffer (starting at address xdr_buff) and translates it to C
language.

Synergy User Manual and Tutorial

210

PARAMETERS: int id – The index into cnf_map global data structure where the
actual channel number or file pointer is stored
char *buf -
int bufsize – the number of bytes to read
int e_type -

RETURNS: int status - number of bytes read, 0 if error writing or an error code
otherwise

cnf_xdr_tsget(tsh, tp_name, tuple, tp_len, e_type)

PURPOSE: Destructive reads the external data representation of a tuple from a

named tuple space and Translates it to C language.
PARAMETERS: int tsh

char *tp_name
char *tuple
int tp_len
int e_type

RETURNS: int status - the size of the tuple received if successful, 0 if it is an
asynchronous read or –1 on error

cnf_xdr_tsput(tsh, tp_name, tuple, tp_len, e_type)

PURPOSE: Translates a tuple to it's external data representation and inserts it

into a named tuple space
PARAMETERS: int tsh

char *tp_name
char *tuple
int tp_len
int e_type

RETURNS: int status - ? on success or an error code otherwise

cnf_xdr_tsread(tsh, tp_name, tuple, tp_len, e_type)

PURPOSE: Reads the external data representation of a tuple from a named

tuple space and translates it to C language.
PARAMETERS: int tsh

char *tp_name
char *tuple

Synergy User Manual and Tutorial

211

int tp_len
int e_type

RETURNS: int status - number of bytes read, 0 if error writing or an error code
or –1 on error

cnf_xdr_write(id, buf, bufsize, e_type)

PURPOSE: Translates a 'record` to it's external data representation and sends it
to file (or mailbox or decnet channel) from buffer (starting at address xdr_buff).
PARAMETERS: int id – The index into cnf_map global data structure where the

actual channel number or file pointer is stored
char *buf -
int bufsize – the number of bytes to send
int e_type -

RETURNS: 1 if successful or an error code or –1 on error

PURPOSE:
PARAMETERS:
RETURNS:

Synergy User Manual and Tutorial

212

Error Codes

TSH_ER_NOERROR Normal operation - No error at all
TSH_ER_INSTALL Error: Tuple Space daemon could not be started
TSH_ER_NOTUPLE Error: Could not find such tuple
TSH_ER_NOMEM Error: Tuple space daemon out of memory
TSH_ER_OVERRT Warning: Tuple was overwritten

Synergy User Manual and Tutorial

213

References

i Information on tally sticks found at members.fortunecity.com
ii Information on abacus found at http://www.maxmon.com
iii Jill Britton, Department of Mathematics, Camosun College, 3100 Foul Bay Road, Victoria, BC, Canada,
V8P 5J2. Web Page: http://ccins.camosun.bc.ca/~jbritton/jberatosthenes.htm
iv http://encyclopedia.thefreedictionary.com/
v http://www.thocp.net/hardware/pascaline.htm
vi http://www.ox.compsoc.net/~swhite/history/timelines.html
vii http://miami.int.gu.edu.au/dbs/1010/lectures/lecture4/Ifrah-pp121-133.html
viii http://www.agnesscott.edu/lriddle/women/love.htm
ix http://www.kerryr.net/pioneers/boole.htm
x http://knight.city.ba.k12.md.us/faculty/ss/samuelmorse.htm
xi http://history.acusd.edu/gen/recording/bell-evolution.html
xii http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Hollerith.html - Article by: J J O'Connor and
E F Robertson
xiii http://www.marconi.com/html/about/marconihistory.htm
xiv http://www.radio-electronics.com/info/radio_history/gtnames/fleming.html
xv http://www.epemag.com/zuse/
xvi http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Aiken.html
xvii http://www.research.att.com/~njas/doc/shannonbio.html
xviii http://www.kerryr.net/pioneers/stibitz.htm
xix http://plato.stanford.edu/entries/turing/
xx http://ei.cs.vt.edu/~history/do_Atanasoff.html
xxi http://www.library.upenn.edu/exhibits/rbm/mauchly/jwmintro.html
xxii http://ftp.arl.mil/~mike/comphist/61ordnance/chap3.html
xxiii http://en.wikipedia.org/wiki/MIT_Whirlwind
xxiv http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/statistics.html
xxv http://www.computer50.org/mark1/MM1.html
xxvi http://www.awc-hq.org/lovelace/1997.htm
xxvii http://www.cs.yale.edu/homes/tap/Files/hopper-story.html
xxviii http://inventors.about.com/library/weekly/aa061698.htm
xxix http://csdl.computer.org/comp/mags/an/2004/02/a2034abs.htm
xxx http://www.cc.gatech.edu/gvu/people/randy.carpenter/folklore/v3n1.html
xxxi http://en.wikipedia.org/wiki/Defense_Advanced_Research_Projects_Agency
xxxii http://www.engin.umd.umich.edu/CIS/course.des/cis400/algol/algol.html#history
xxxiii http://inventors.about.com/library/weekly/aa080498.htm
xxxiv http://www.nersc.gov/~deboni/Computer.history/LARC.Cole.html
xxxv http://www.smartcomputing.com/editorial/dictionary/
detail.asp?guid=&searchtype=1&DicID=16502&RefType=Encyclopedia
xxxvi http://en.wikipedia.org/wiki/CTSS
xxxvii http://www.ukuug.org/events/linux2001/papers/html/DAspinall.html
xxxviii http://www.fys.ruu.nl/~bergmann/history.html
xxxix http://www.engin.umd.umich.edu/CIS/course.des/cis400/pl1/pl1.html
xl http://www.afrlhorizons.com/Briefs/Mar02/OSR0103.html
xli http://www.smalltalk.org/alankay.html
xlii http://www.faqs.org/faqs/dec-faq/pdp8/

Synergy User Manual and Tutorial

214

xliii http://bugclub.org/beginners/languages/pascal.html
xliv http://en.wikipedia.org/wiki/Edsger_Dijkstra
xlv http://www.campusprogram.com/reference/en/wikipedia/s/so/software_engineering.html
xlvi http://en.wikipedia.org/wiki/UNIX
xlvii http://en.wikipedia.org/wiki/RS-232
xlviii http://inventors.about.com/library/weekly/aa092998.htm
xlix http://bugclub.org/beginners/processors/Intel-8086.html
l http://bugclub.org/beginners/processors/Intel-80186.html
li http://www.pcguide.com/ref/cpu/char/mfg.htm
lii http://members.fortunecity.com/pcmuseum/dos.htm
liii http://www.cs.uiuc.edu/news/alumni/fa98/chen.html
liv http://www.webmythology.com/VAXhistory.htm
lv http://en.wikipedia.org/wiki/Motorola_68000
lvi http://en.wikipedia.org/wiki/INMOS_Transputer
lvii http://csep1.phy.ornl.gov/ca/node11.html
lviii PVM: Parallel Virtual Machine - A Users' Guide and Tutorial for Networked Parallel Computing; Al
Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy Sunderam; MIT Press,
Scientific and Engineering Computation; Janusz Kowalik, Editor; Copyright 1994 Massachusetts Institute
of Technology. The book can be viewed at: http://www.netlib.org/pvm3/book/pvm-book.html
lix Linda Users Guide and Reference Manual, Manual Version 6.2; Copyright © 1989-1994, SCIENTIFIC
Computing Associates, Inc. All rights reserved.
lx http://people.hofstra.edu/faculty/Stefan_Waner/RealWorld/logic/logicintro.html
lxi Garson, James, "Modal Logic", The Stanford Encyclopedia of Philosophy (Winter 2003 Edition), Edward
N. Zalta (ed.), URL = <http://plato.stanford.edu/archives/win2003/entries/logic-modal/>.
lxii Galton, Antony, "Temporal Logic", The Stanford Encyclopedia of Philosophy (Winter 2003 Edition),
Edward N. Zalta (ed.), URL = <http://plato.stanford.edu/archives/win2003/entries/logic-temporal/>.
lxiii Reevaluating Amdahl’s Law; John L. Gustafson; Sandia National Laboratories; 1988.
lxiv Reevaluating Amdahl’s Law and Gustafson’s Law; Yuan Shi; Temple University; October 1996.
lxv Synergy Manual

