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syn·er·gysyn·er·gysyn·er·gysyn·er·gy (sǐn r-jē) noun 

plural syn·er·giessyn·er·giessyn·er·giessyn·er·gies 

 

1.1.1.1. The interaction of two or more agents or forces so that their combined 

effect is greater than the sum of their individual effects.  

2.2.2.2. Cooperative interaction among groups, especially among the acquired 

subsidiaries or merged parts of a corporation, that creates an enhanced 

combined effect.  

[From Greek sunergia, cooperation, from sunergos, working together.] 
 
 
 

"For it is unworthy of excellent men to lose hours like slaves in the labour of 

calculation which could safely be relegated to anyone else if machines were 

used." 
 
-Gottfried Wilhelm Leibniz
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Introduction 
 

 
Red text: Copied and pasted from syng_man.ps by Dr. Shi 
 
The emergence of low cost, high performance uni-processors forces the enlargement of 
processing grains in all multi-processor systems. Consequently, individual parallel 
programs have increased in length and complexities. However, like reliability, parallel 
processing of any multiple communicating sequential programs is not really a functional 
requirement. 
 
Separating pure functional programming concerns from parallel processing and resource 
management concerns can greatly simplify the conventional ``parallel programming'' 
asks.  For example, the use of dataflow principles can facilitate automatic task 
scheduling. Smart tools can automate resource management. As long as the application 
dependent parallel structure is uncovered properly, we can even automatically assign 
processors to parallel programs in all cases.  
 
Synergy V3.0 is an implementation of above ideas. It supports parallel processing using 
multiple ``Unix computers'' mounted on multiple file systems (or clusters) using TCP/IP. 
It allows parallel processing of any application using mixed languages, including parallel 
programming languages. Synergy may be thought of as a successor to Linda1, PVM2 and 
Express3. 
 
Our need to store and process data has been continually increasing for thousands of years.  
This need has lead to the development of complex storage, communication, numerical 
and processing systems.  The information in this section was wholly obtained from 
sources freely available on the Internet, which are cited in the references section.  Much 
of it was obtained from timelines, encyclopedias and academic Web pages.  The accuracy 
of information collected from the Internet was checked by using multiple corroborating 
resources and eliminating contradictory information. 
 
 

                                                 
1 Linda is a tuple space parallel programming system lead by Dr. David Gelenter, Yale University. Its 
commercial version is distributed by the Scientific Computing Associates, New Heaven, NH. 
2 PVM is a message passing parallel programming system by Oak Ridge National Laboratory, University 
of Tennessee and Emory University. 
3 Express is a commercial message passing parallel programming system by ParaSoft, CA. 
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History and Limitations of Ancient and Traditional 

Computing 
 

 
 The first recognized use of a tool to record the 
result of transactions was a device called a tally 
stick.  The oldest known artifact is a wolf bone 
with a series of fifty-five cuts in groups of five 
that dates from approximately 30,000 to 25,000 
BC.  The notches in the stick may refer to the 
number of coins or other items that are counted 
by some early form of bookkeeping.  The 
earliest stock markets used tally sticks to record 
transactions.  The word “stock” actually means a 
stout stick.  During a transaction the “broker” 
would record the transaction for the purchase of 
stock on a tally stick and then “break” the stick, 
keeping half and giving the other half to the 
investor.  The two halves would be fit together 
at some later time to verify the investor’s 
ownership of the shares of stock.  In 1734 the 
English government ordered the cessation of the 
use of tally sticks but they were not completely 
abolished until 1826.  By 1834 British 

Parliament collected a very large number of tally sticks, which the decided to burn in the 
fireplace at the House of Lords.  The fireplace was “engorged” with tally sticks such that 
the fire spread to the paneling and to the neighboring House of Commons, destroying 
both buildings, which took ten years to reconstruct.i  Other primitive recording devices 
included clay tablets, knotted strings, pebbles in bags and parchments.  In modern times, 
books or legers have been used to record commercial or financial data using more formal 
bookkeeping systems, such as the double entry standard that is widely used today. 
 
The first place-valued numerical system, in which both digit and position within the 
number determine value, and the abacus, which was the first actual calculating 
mechanism, are believed to have been invented by the Babylonians sometime between 
3000 and 500 BC.  Their number system is believed to have been developed based on 
astrological observations.  It was a sexagesimal (base-60) system, which had the 
advantage of being wholly divisible by 2, 3, 4, 5, 6, 10, 15, 20 and 30.  The first abacus 
was likely a stone covered with sand on which pebbles were moved across lines drawn in 
the sand.  Later improvements were constructed from wood frames with either thin sticks 
or a tether material on which clay beads or pebbles were threaded.  Sometime between 



Synergy User Manual and Tutorial 

7 

200 BC the 14th century, the 
Chinese invented a more advanced 
abacus device.  The typical 
Chinese swanpan (abacus) is 
approximately eight inches tall and 
of various widths and typically has 
more than seven rods, which hold 
beads usually made from 
hardwood.  This device works as a 
5-2-5-2 based number system, 
which is similar to the decimal 

system.  Advanced swanpan techniques are not limited to simple addition and 
subtraction.  Multiplication, division, square roots and cube roots can be calculated very 
efficiently.  A variation of this devise is still in use by shopkeepers in various Asian 
countries.ii  There is direct evidence that the Chinese were using a positional number 
system by 1300 BC and were using a zero valued digit by 800 AD. 
 
Sometime after 200 BC, Eratosthenes of Cyrene (276-194 BC) developed the Sieve of 
Eratosthenes, which was a procedure for determining prime numbers.  It is called a sieve 
because it strains or filters out all non-primes.  The process is as follows: 
 

1. Make a list of all integers greater than one and less than or equal to n 
2. Strike out the multiples of all primes less than or equal to the square root of n.  
3. The numbers that are left are the primes. 

 
The table below show the result for n = 50 with primes in the white squares. 
 

 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

 
Eratosthenes is also credited with being the first person to accurately estimate the 
diameter of the Earth and also served as the director of the famed Library of Alexandria.iii 
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The Sieve of Eratosthenes is one of the first well-
documented uses of an efficient algorithm-type solution 
to solve a complex problem.  The word algorithm is 
derived from the Latin derivation of Al-Khowarizmi’s 
name.  Muhammad ibn Musa al-Khwarizmi was an 
Arab mathematician of the court of Mamun in Baghdad 
born before 800 AD in central Asia, now called 
Uzbekistan.  Along with other Arabic mathematicians, 
he is responsible for the proliferation of the base-ten 
number system, which was developed in India.  His 
book on the subject of Hindu numerals was later 
translated into the Latin text Liber Algorismi de 
numero Indorum.  While a scholar at the House of 
Wisdom in Baghdad, he wrote Hisãb al-jabr w'al-
muqãbala (from which the word "algebra" is derived).  
Lose translations of this title could be “the science of 
transposition and cancellation” or “the calculation of 
reduction and restoration.”  He devised a method to 
restore or transpose negative terms to the other side of 
an equation and reduce (cancel) or unite similar terms 

on either side of the equation.  Transposition means that a quantity can be added or 
subtracted (multiplied or divided) from both sides of an equation and cancellation means 
that if there are two equal terms on either side of an equation, they can be altogether 
cancelled.  The following is a translation of a popular verse in Arab schools from over six 
hundred years ago: 
 

Cancel minus terms and then 

Restore to make your algebra; 

Combine your homogeneous terms 

And this is called muqabalah. 
 
 
Robert of Chester translated this work into Latin in 1140 AD.  Similar methods are still in 
use in modern algebraic manipulations, which came in the sixteenth century from 
Francois Viète.  Al-Khowarizmi also claimed in his book Indorum (the book of Al-
Khowarizmi) that any complex mathematical problem could be broken down into 
smaller, simpler sub-problems, whose results could be logically combined to solve the 
initial problem.  This is the main concept of an algorithm.  Latin translations of his work 
contributed to much of medieval Europe’s knowledge of mathematics.  In 1202, 
Leonardo of Pisa (otherwise known by his nickname Fibonacci) (c. 1175-1250) wrote the 

A postage stamp issued by the USSR in 
1983 to commemorate the 1200th 
anniversary of Muhammad al-
Khowarizmi. Scanned by Donald Knuth, 
one of the legends of computer science. 
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historic book Liber Abaci or “The Book of Calculation”, which was his interpretation of 
the Arabic-Hindu decimal number system that he learned while traveling with Arabs in 
North Africa.  This book was the first to expose the general public, rather than academia, 
to the decimal number system, which quickly gained popularity because of its clear 
superiority over existing systems. iv 

 
The Greek astronomer, 
geographer and 
mathematician 
Hipparchus (c. 190 BC 
– 120 BC) likely 
invented the 
navigational instrument 
called an astrolabe.  
This is a protractor-like 
device consisting of a 
degree marked circle 

with a center attached rotating arm.  When the zero degree mark is aligned on the horizon 
and a celestial body is sighted along the movable arm, the celestial body’s position can be 
read from the degree marks on the circle.  The sextant eventually replaced this device 
because the sextant measured relative to the horizon and not the device itself, which 
allowed more accurate measurements of position for latitude. 

 
Sometime between 1612 and 1614, John Napier (1550 - 
1617), born at Merchiston Tower in Edinburgh, 
Scotland, developed the decimal point, logarithms and 
Napier’s bones—an abacus for the calculation of 
products and quotients of numbers.  Hand performed 
calculations were made much easier by the use of 
logarithms, which made possible many later scientific 
advancements.  Mirifici Logarithmorum Canonis 
Descriptio or in English "Description of the Marvelous 
Canon of Logarithms", his mathematical work, contained 
thirty-seven pages of explanatory matter and ninety 
pages of tables, which furthered advancements in 
astronomy, dynamics and physics.  Based on Napier’s 
algorithms in 1622, William Oughtred (1574 - 1660) 

invented the circular slide rule for calculating multiplication and division. In 1632 he 
published Circles of Proportion and the Horizontal Instrument, which described slide 
rules and sundials.  By 1650 the sliding stick form of the slide rule was developed.  In 
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1624, Henry Briggs (1561 - 1630) published the first set of modern logarithms, and in 
1628, Adrian Vlacq published the first complete set of modern logarithms. 
 

In 1623, 
Wilhelm 
Schickard (1592 
- 1635) invented 
what is believed 
to be the first 
mechanical 
calculating 
machine (left).  This device used a “calculating 
clock” with a gear driven carry for mechanism to 
calculate the multiplication of multi-digit numbers 

in higher order positions.  Between 1642 and 1643, at the age of 18, Blaise Pascal (1623 - 
1662) created the “Pascaline” (right) a gear driven adding machine, which was the first 
mechanical adding/subtracting machine.  Pascal developed this machine to help his father 
with his work—a tax collector.  He discovered how to mechanically carry numbers to the 
next high order by causing the higher order gear to advance one tooth for a full rotation 
(ten teeth) of the next lower ordered gear.  This method is similar to that of old pinball 
machines or gas pumps with rotating number counters.  These devices were never placed 
into commercial service due to high cost of manufacture.  Approximately fifty Pascalines 
were constructed and could handle calculations with up to eight digits.v   
 
In 1666 Sir Samuel Morland (1625-1695) invented a mechanical calculator that could add 
and subtract.  This machine was designed for use with English currency but had no 
automatic carry mechanism.  Auxiliary dials recorded numerical overflows and had to be 
re-entered as addends.vi  In 1673, Gottfried Wilhelm von Leibniz (1646 - 1716) designed 
a machine called the “Stepped Reckoner” that could mechanically perform all four 
mathematical operations using a stepped cylinder gear, though the initial design gave 
some wrong answers.  This machine was never mass-produced because the high level of 
precision needed to manufacture it was not yet available.vii  In 1774 Philipp-Matthaus 
Hahn (1739 - 1790) constructed and sold a small number of mechanical calculators with 
twelve digits of precision. 
 
The advent of the Industrial Revolution, just prior to the start of the nineteenth century, 
ushered in a massive increase in commercial activity.  This created a great need for 
automatic and reliable calculation.  Charles Xavier Thomas (1791 - 1871) of Colmar, 
France invented the first mass-produced calculating machine, called the Arithmometer 
(left) in 1820.  His machine used Leibniz’s stepped cylinder as a digital-value actuator.  
However, Thomas’ automatic carry system worked in every possible case and was much 
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more robust than any 
predecessor.  This machine was 
improved and produced for 
decades.  Other models, designed 
by competitors, eventually 
entered the marketplace. 
 
In 1786, J. H. Mueller, of the 
Hessian army, conceived the 
“Difference Engine” but could 
not raise the funds necessary for 
its construction.  This was a 
special purpose calculating 

device that, given the differences between certain values where the polynomial is 
uniquely specified, can tabulate the polynomial values.  This calculator would be useful 
for functions that can be approximated polynomially over certain intervals.  The 
realization of the Difference Engine’s mechanical computer prototype design would not 

occur until 1822, when conceived by 
Charles Babbage (1792 - 1871).  In 
1832, Babbage and Joseph Clement 
built a scaled-down prototype that could 
perform operations on 6-digit numbers 
and 2nd order or quadratic polynomials.  
A full-sized machine would be as big as 
a room and able to perform operations 
on 20-digit numbers and 6th order 
polynomials.  Babbage’s Difference 
Engine project was eventually canceled 
due to cost overruns.  In 1843, George 
Scheutz and his son Edvard Scheutz, of 
Stockholm, produced a 3rd order engine 
with the ability to print its results.  From 
1989-91, a team at London's Science 
Museum built a fully functional 
Difference Engine based on Babbage’s 
latest (1837), improved and simpler 
design, using modern construction 
materials and techniques.  The machine 

could successfully operate on 31-digit numbers and 7th order differences. 
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 The Difference Engine uses Sir Isaac Newton’s method of differences.  It works as 
follows:  Consider the polynomial p(x) = x2 + 2x + 1 and tabulate the values for p(0), 
p(0.1) , p(0.2) , p(0.3) , p(0.4).  The table below contains the results of the polynomial 
values in the first column, the differences of each consecutive set of polynomial results in 
the second column, and the differences of each consecutive set of differences from the 
second column in the third column.  For a 2nd order polynomial, the third column will 
always contain the same value.  
Likewise, for an nth order 
polynomial, column n+1 will 
always have the same value.  To 
find p(0.5), start from the right 
column with value 0.02 and 
subtract this from the second 
column to get -0.29.  Then 
subtract this value from the first 
column to get 2.25, which is the 
solution to p(0.5).  This can be 
continued incrementally for greater p(x), indefinitely, by updating the table and repeating 
the algorithm. 
 

Babbage also invented the 
Analytical Engine, which 
was the first computing 
device designed to use read-
only memory, in the form of 

punched cards, to store programs. This general-
purpose mathematical device was very similar to 
electronic processes used in early computers.  Later 
designs of this machine would perform operations on 
40-digit numbers.  The machine had a processing unit 
called the “mill” that contained two main 
accumulators and some special purpose auxiliary 
accumulators.  It also had memory area called the 
“store”, which could hold approximately 100 more 
numbers.  To accept data and program instructions, 
the Analytical Engine would be equipped with 
several punch card readers in which the cards were 
linked together to allow forward and reverse reading.  
These linked cards were first used in 1801 by Joseph-
Marie Jacquard to control the weaving patterns of a 
loom.  The machine could perform conditional 

p(0) = 1   

 1 – 1.21 = -0.21  

p(0.1) = 1.21  -0.21 – (-0.23) = 0.02 

 1.21 – 1.44 = -0.23  

p(0.2) = 1.44  -0.23 – (-0.25) = 0.02 

 1.44 – 1.69 = -0.25  

p(0.3) = 1.69  -0.25 – (-0.27) = 0.02 

 1.69 – 1.96 = -0.27  

p(0.4) = 1.96   

This device impresses a zinc 
block, which prints the results 
of calculations on paper.  This 
could be considered the first 
standalone computer printer. 
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branching called “jumps”, which allowed it to skip to a desired instruction.  The device 
was capable of using a form of microcoding by using the position of studs on a metal 
barrel called the “control barrel” to interpret instructions.  This machine could calculate 
an addition or subtraction operation in about three seconds, and a multiplication or 
division operation in about three minutes. 

 
In 1843, Augusta Ada Byron (1815 - 1852), Lady 
Lovelace, mathematician, scientist and daughter of the 
famed poet Lord Byron, translated an article from 
French about Babbage’s Analytical Engine, adding her 
own notes.  Ada composed a plan for the calculation of  

Bernoulli numbers, which is considered to be the first 
ever “computer program.”  Though because it was 
never built, the algorithm was never run on Analytical 
Engine.  In 1979, the U.S. Department of Defense 
honored the world’s first “computer programmer” by 
naming its own software development language as 
“Ada.”viii 
 
George Boole (1815 - 
1864) (right) wrote, "An 
Investigation of the Laws 
of Thought, on Which Are 
Founded the Mathematical 

Theories of Logic and Probabilities" in 1854.  This article 
detailed Boole’s new binary approach, which processed only 
two objects at a time (in a yes-no, true-false, on-off, zero-one 
type manner), to logic by incorporating it into mathematics 
and reducing it to a simple algebra, which presented an 
analogy between symbols that represent logical forms and 
algebraic symbols.  Three primary operations were defined based on those in Set Theory: 
AND—intersection, OR—union, and NOT—compliment.  This system was the 
beginning of the Boolean algebra that is the basis for many applications in modern 
electronic circuits and computation.ix  Though his idea was either ignored or criticized by 
many of his peers, twelve years later, an American, Charles Sanders Peirce, described it 
to the American Academy of Arts and Sciences.  He spent the next twenty years 
expanding and modifying the idea, eventually designing a basic electrical logic-circuit. 
 

Processing and storage were not the only advancements 
made prior to the 20th century.  There were also great 
improvements in communications technology.  Samuel 
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Morse (1791 -1872) conceived the telegraph in 1832 
and had built a working model by 1835.  This was the 
first device to communicate through the use of 
electricity.  The telegraph worked by tapping out a 
message from a sending device (right) in Morse code, 
which was a series of dots-and-dashes that 
represented letters, numbers, punctuation and other 
symbols.  These dots-and-dashes were converted into 
electrical impulses and sent, on the wire, to a receiver 
(left).  The receiver converted the electrical impulses to an audible sound that represented 
the original dots-and-dashes.   In 1844, he sent a signal from Washington to Baltimore 
over this communication device.  By 1854 there was 23,000 miles of telegraph wire being 
used within the United States.  This provided a much more efficient form of 
communication that greatly affected national socio-economic development.x  In 1858, a 
telegraph cable was run across the Atlantic Ocean, providing communication service 
between the U.S. and England for less than a month.  By 1861 a transcontinental cable 
connected the East and West coasts of the U.S. and by 1880, 100,000 miles of undersea 
cable had been laid. 
 

The next great advancement in 
communication was Alexander 
Graham Bell’s (1847 - 1922) 
invention of the "electrical speech 
machine" or telephone in 1876.  
This invention was developed from 
improvements that Bell made to 
the telegraph, which allowed more 
than one signal to be transmitted 
over a single set of telegraph wires, 
simultaneously.  Within two years, 
he had set up the first telephone 
exchange in New Haven, 
Connecticut.  He had established 
long distance connections between 
Boston, Massachusetts and New 

York City by 1884.  The telecommunication industry would eventually reach almost 
every locality in the country, then the world.  Bell’s original venture evolved into larger 
companies and in 1881 American Bell Telephone Co. Inc. purchased Western Electric 
Manufacturing Company to manufacture equipment for Bell.  In 1885, American 
Telephone and Telegraph Company (AT&T) were formed to extend Bell system long 
lines across the U.S. and in 1899 AT&T became the parent company of Bell, assuming 
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all assets.  The Western Electric Engineering Dept. was organized in 1907 and a research 
branch to do scientific research and development was organized in 1911.  On December 
27, 1925, Bell Telephone Laboratories was created to consolidate the research labs from 
AT&T and Western Electric, which remained a wholly owned subsidiary of AT&T after 
the divestiture of the seven regional Bell companies.  Bell Laboratories would eventually 
become one of the world’s premier communication and computer research centers.  One 
of Bell Labs contributions to computing was the development of UNIX by Dennis 
Ritchie and Kenneth Thomson in 1970.  In 1991, AT&T acquired NCR, formerly 
National Cash Register, which became AT&T Global Information Solutions.xi 

 
The explosion in population growth between 1880 and 1890, 
due to increased birth rates and immigration, created a great 
dilemma for the Census Bureau.  During this time, Herman 
Hollerith (right) was a statistician for the Census Bureau and 
was responsible to solve problems related to the processing 
of large amounts of data from the 1880 US census.  He was 
attempting to find ways of manipulating data mechanically as 
was suggested to him by Dr. John Shaw Billings.  In 1882, 
Hollerith joined MIT to teach mechanical engineering and 
also started to experiment with Billings’ suggestion by 
studying the operation of the Jacquard loom.  Though he 

found that the loom’s operation was not useful for processing data, he determined that the 
punched cards were very useful for storing data.  In 1884, Hollerith devised a method to 
convert the data stored on the punched cards into electrical impulses using card-reading 
device.  He also developed a typewriter-like device to record the data on the punched 
cards, which changed very little in its design over the next 50 years.  The card readers 
used pins that pass through the holes in the cards creating electrical contacts, where the 
impulses from these contacts would activate mechanical counters to manipulate and tally 
the data.  This system was successfully demonstrated in 1887 by tabulating mortality 
statistics and won the bid to be used to tabulate the 1890 Census data. 
 

Hollerith had Pratt and Whitney manufacture the 
punching devices and the Western Electric 
Company to manufacture the counting devices.  The 
Census Bureau’s new system was ready by 1890 
and processing the first data by September the same 
year.  The count was completed by December 12, 
1890 revealing that the total population of the 
United States to be 62,622,250.  The count was not 
only completed eight times faster than if it was 
performed manually, it also allowed the gathering 
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of more data than was possible before about the country’s population, such as number of 
children in family, etc.  Hollerith founded the Tabulating Machine Company in 1896 to 
produce his improved counting machines and other inventions, one of which 
automatically fed the cards into the counting machines.  His system was used again for 
the 1900 Census but because Hollerith demanded more that the cost to count the data by 
hand, the Census Bureau was forced to develop its own system.  In 1911, Hollerith’s 
company merged with another company, becoming the Computer Tabulating Recording 
Company but was nearly forced out of the counting machine market due to fierce 
competition from new entrants.  Hollerith retired his position of consulting engineer in 
1921.  Because of the efforts Thomas J Watson, who joined the company in 1918, the 
company reestablished its position as a leader in the market by 1920.  In 1924, Computer 
Tabulating Recording Company was renamed as International Business Machines 
Corporation (IBM).  By 1928, punch card equipment will be attached to computers as 
output devices and will also be used by L. J. Comrie to calculate the motion of the 
moon.xii 

 
In 1895, Italian physicist and inventor 
Guglielmo Marconi sent the first 
wireless message.  Prior to his first 
transmission, Marconi studied the works 
of Heinrich Hertz (1857-1894) and later 
started to experiment with Hertzian 
waves to transmit and receive messages 
over increasing distances without the use 
of wires.  The messages were sent in 
Morse code.  He patented his invention 
in 1896.    After years of 
experimentation and improvement, 
especially with respect to distance, in 

1897 Marconi named his company as the Wireless Telegraph and Signal Company.  After 
a series of takeovers and mergers, this company eventually became part of the General 
Electric Company (GEC), which was eventually renamed Marconi Corporation plc in 
2003. xiii 
 

In 1904, radio technology was improved by the 
invention of the two-electrode radio rectifier, which was 
the first electron tube, also called the oscillation valve or 
thermionic valve (left).  It is credited to John Ambrose 
Fleming, a consultant to the Marconi Company. This 
device was much more sensitive to radio signals then its 
predecessor, the coherer.  This invention inspired all 
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subsequent developments in wireless transmission.  In 
1906, Lee de Forest improved the thermionic valve by 
adding a third electrode and a grid to control and amplify 
signals, creating a new device called an Audion.  This 
device was used to detect radio waves and convert the 
radio frequency (RF) to an audio frequency (AF), which 
could be amplified through a loudspeaker or headphones.  
By 1907 gramophone music was regularly broadcast from 
New York over radio waves.xiv 
 

In 1907, both A. A. 
Campbell-Swinton 
()(left) and Boris 
Rosing () 
independently suggest 
using cathode ray tubes to transmit images.  Though 
intended for television, the cathode ray tube has made 
a valuable contribution to computing by providing a 
human readable interface with computational devices.  
In a letter to Nature magazine, Swinton describes first 
full description of an all-electronic television system 
as: 
 
“Distant electric vision can probably be solved by the 

employment of two beams of kathode rays (one at the 

transmitting and one at the receiving station) 

synchronously deflected by the varying fields of two 

electromagnets placed at right angles to one another and energised by two alternating 

electric currents of widely different frequencies, so that the moving extremities of the two 

beams are caused to sweep synchronously over the whole of the required surfaces within 

the one-tenth of a second necessary to take advantage of visual persistence. Indeed, so 

far as the receiving apparatus is concerned, the moving kathode beam has only to be 

arranged to impinge on a suitably sensitive fluorescent screen, and given suitable 

variations in its intensity, to obtain the desired result.” 

 
In 1927, during a television demonstration, Herbert Hoover’s face is the first image 
broadcast in the U.S., using telephone wires for the voice transmission.  Vladimir 
Zworykin invented the cathode ray tube (CRT) in 1928.  It eventually became the first 
computer storage device.  Color television signals were successfully transmitted in 1929 
and first broadcast in 1940. 
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In 1911, while studying the effects of extremely cold temperatures on metals such as 
mercury and lead, physicist Heike Kamerlingh Onnes discovered that they lost all 
resistance at certain low temperatures just above absolute zero.  This phenomenon is 
known as superconductivity.  In 1915, another physicist, Manson Benedicks, discovered 
that alternating current could be converted to direct current by using a germanium crystal, 
which eventually leads to the use of microchips.  In 1919, U.S. physicists William Henry 
Eccles (1875 - 1966) and F.W. Jordan () invented the flip-flop, the first electronic 
switching electric circuit, which was critical to high-speed electronic counting systems.  
The flip-flop is a digital logic hardware circuit that can switch or toggle between two 
states controlled by its inputs, which is similar to a one-bit memory.  The three common 
types of flip-flop are: the SR flip-flop, the JK flip-flop and the D-type flip-flop (shown 
below). 

 
In 1925, Vannevar 
Bush (1890 - 1974) 
developed the first 
analog computer to 
solve differential 
equations.  These 
analog computers 
were mechanical 
devices that used 
large gears and other 
mechanical parts to 
solve equations.  The 
first working machine 
was completed in 
1931 (left).  In 1945, 
he published an 

article in the Atlantic Monthly called, "As We May Think, which described a theoretical 
device called a memex.  This device uses a microfilm search system, which is very 
similar to hypertext, using a concept that he called associative trails.  His description of 
the system is: 
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"The owner of the memex let us say, is interested in the 

origin and properties of the bow and arrow. Specifically he 

is studying why the short Turkish bow was apparently 

superior to the English long bow in the skirmishes of the 

Crusades. He has dozens of possibly pertinent books and 

articles in his memex. First he runs through an 

encyclopedia, finds an interesting but sketchy article, 

leaves it projected. Next, in a history, he finds another 

pertinent item, and ties the two together. Thus he goes, 

building a trail of many items. Occasionally he inserts a 

comment of his own, either linking it into the main trail or 

joining it by a side trail to a particular item. When it 

becomes evident that the elastic properties of available 

materials had a great deal to do with the bow, he branches 

off on a side trail which takes him through textbooks on 

elasticity and physical constants. He inserts a page of longhand analysis of his own. Thus 

he builds a trail of his interest through the maze of materials available to him." 

 
In 1934, Konrad Zuse (1910 - 1995) was an engineer 
working for Henschel Aircraft Company, studying 
stresses caused by vibrations in aircraft wings.  His 
work involved a great deal of mathematical calculation.  
To aid him in these calculations, he developed ideas on 
how machines should perform calculations.  He 
determined that these machines should be freely 
programmable by reading a sequence of instructions 
from a punched tape and that the machine should make 
use of both the binary number system and a binary logic 
system to be capable of using binary switching 
elements.  He designed a semi-logarithmic floating-
point unit representation, using an exponent and a 
mantissa, to calculate both very small and very large 
numbers.  He developed a “high performance adder”, 
which included a one-step carry-ahead and precision 

arithmetic exceptions handling.  He also developed an addressable memory that could 
store arbitrary data.  He devised a control unit to control all other devices within the 
machine along with input and output devices that convert numbers from binary to 
decimal and vice versa. 
 
By 1936 he completed the design for the Z1 computer (top next page), which he 
constructed in his parents’ living room by 1938.  This was a completely mechanical unit 
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based on his previous design.  
Though unreliable, it had the 
ability to store 64 words, each 22 
bits in length (8 bits for the 
exponent and sign, and 14 bits for 
the mantissa), in its memory, 
which consisted of layers of metal 
bars between layers of glass.  Its 
arithmetic unit was constructed 
from a large number of mechanical 
switches and had two 22-bit 
registers.  The machine was freely 
programmable with the use of a 
punched tape.  The device also had 
the prescribed control unit and 

addressable memory, making it the world’s first programmable binary computing 
machine, with a clock speed of 1-Hertz.  The picture above is a topside view of the Z1, 
which is very similar in appearance to a silicon chip.  At first the machine was not very 
reliable.  However, it functioned reliably by 1939. 
 

The Z2 was an experimental 
machine similar to the Z1 but 
used 800 relays for the 
arithmetic unit instead of 
mechanical switches.  This 
machine proved that relays 
were reliable, which prompted 
Zuse to design and build the Z3 
using relays.  The Z3 was 
constructed between 1938 and 
1941 in Berlin.  The Z3 used 
relays for the entire machine 
and had a 64-word memory, 
consisting of 22-bit floating-
point numbers.  The Z3 was the 

first reliable, fully functional, freely programmable computer based on the binary 
floating-point number and a switching system, which had the capability to perform 
complex arithmetic calculations.  It had a clock speed of 5.33 Hertz and could perform a 
multiplication operation in 3 seconds.  This machine contained all the components except 
the ability to store the program in the memory together with the data that was described 
by the von Neumann et al machine in 1946.  In 1998, Raul Rojas proved that the Z3 was 
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a truly universal computer in the sense of a Turing machine.  The picture above is Zuse 
along with his 1961 reconstruction of the Z3.  Allied bombing, during World War II, 
destroyed the original Z3. 
 
An example program from “The Life and Work of Konrad Zuse” Web Site, authored by 
Horst Zuse, listed in the references section, for the Z3 is the calculation of the 
polynomial: ((a4x + a3)x + a2)x + a1, where a4, a3, a2, and a1 would first be loaded into 
the memory cells 4, 3, 2, and 1. 
 

Lu  To call the input device for the variable x 
Ps 5 To store variable x in memory word 5 
Pr 4 Load a4 in Register R1 
Pr 5 Load x in Register R2 
Lm Multiply: R1 := R1 x R2 
Pr 3 Load a3 in Register R2 
Ls1 Add: R1 := R1 + R2 
Pr 5 Load x in R2 
Lm Multiply: R1 := R1 x R2 
Pr 2 Load a2 in Register R2 
Ls1 Add: R1 := R1 + R2 
Pr 5 Load x in Register R2 
Lm Multiply: R1 := R1 x R2 
Ppr 1 Load a1 in Register R2 
Ls1 Add: R1 := R1 + R2 
Ld Shows the result as a decimal number 

 
The program above is very 
similar to the assembly code 
that is used in modern 
computers.  From 1942 to 
1946 Zuse began to develop 
ways to program computers.  
To aid engineers and 
scientists in the solution of 
complex problems, he 
developed the Plankakül 
(plan calculus) programming 
language.  This precursor to 
today’s algorithm-type 
languages was the world’s 
first programming language 
and was intended for a 

logical machine. A logical machine could do more than just numerical calculations, of 
which the algebraic machines (Z1, Z2, Z3 & Z4) that he had previously designed are 
limited.  The picture on the left is the Z4 model, completed in 1945 and reconstructed in 
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1950, which used a mechanical memory, similar to that in the Z1, and had 32-bit words.  
By 1955, this machine had the added abilities to call subprograms, through a secondary 
punch tape reader, and use a conditional branch instruction. 
 
In 1942, Zuse built the S1, a special purpose computer to measure the wing surface area 
of airplanes, with 600 relays and 12-bit binary words.  This machine was destroyed in 
1944.  Zuse improved this model with the construction of the S2.  This machine used 
approximately 100 clock gauges to automatically scan the surface of wings.  This 
computer was most likely the first machine to use the concept of a process.  It was 
destroyed in 1945.  In 1949, he founded Zuse KG, Germany’s first computer company.   
In 1952, Zuse KG constructed the Z5 for optical calculations, an improved version of the 
Z4, which was about six times faster.  It had many punch card readers for data and 
program input, a punch card writer to output data and could handle 32-bit floating-point 
numbers.  In 1957, Zuse KG constructed the Z22 that contained an 8192-word magnetic 
drum and was the first stored program computer.  In 1961, Zuse KG built the Z23, which 
was based on the same logic as and three times faster than the Z22, and was the first 
transistor-based computer.  In 1965, his company produced the Z43, which was the first 
modern transistor computer to use TTL logic.  The TTL (transistor-transistor-logic) type 
digital integrated circuit (IC) uses transistor switches for logical operations.  In 1956, 
Siemens AG purchased Zuse KG.xv 
 
In 1937, Howard Aiken (1900 - 1973) proposed a machine that could perform four 
fundamental operations of arithmetic, addition, subtraction, multiplication and division, 
in a predetermined order to Harvard University, which was forwarded to IBM.  His 
research had led to a system of differential equations that could only be solved using a 
prohibitive amount of calculations using numerical techniques and which had no exact 
solutions.  His report stated: 

 
“... whereas accounting machines handle only positive 

numbers, scientific machines must be able to handle negative 

ones as well; that scientific machines must be able to handle 

such functions as logarithms, sines, cosines and a whole lot of 

other functions; the computer would be most useful for 

scientists if, once it was set in motion, it would work through 

the problem frequently for numerous numerical values without 

intervention until the calculation was finished; and that the 

machine should compute lines instead of columns, which is 

more in keeping with the sequence of mathematical events.” 
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Aiken, working with IBM engineers, developed the ASCC computer (Automatic 
Sequence Controlled Calculator), which was capable of five operations, addition, 
subtraction, multiplication, division and reference to previous results.  Though it ran on 
electricity and the major components were magnetically operated switches, this machine 
had a lot in common with Babbage's analytical engine.  Construction of the machine 
started in 1939 at the IBM laboratories, Endicott and was completed in 1943.  The 
machine weighed 35 tons, had more than 500 miles of wire, and used vacuum tubes and 
relays to operate.  The machine had 72 storage registers and could perform operations to 
23 significant figures.  The machine instructions were entered on punched paper tapes, 
and punched cards were used to enter input data.  The output was either in the form of 
punched cards or printed by means of an electric typewriter.  The machine was moved to 
Harvard University, where it was renamed the Harvard Mark I, pictured above.  The US 
navy used this machine in the Bureau of Ordnance’s Computation Project for gunnery 
and ballistics calculations, which was performed at Harvard.  In 1947, Aiken completed 

the Harvard Mark II, which was a completely electronic 
computer.  He also worked on the Mark III (the first 
computer to contain a drum memory) and Mark IV 
computers, and made contributions in electronics and 
switching theory.xvi 
 
In 1937, Claude Shannon (1916 - 2001) wrote his Master's 
thesis, “A Symbolic Analysis of Relay and Switching 
Circuits”, using symbolic logic and Boole's algebra to 
analyze and optimize relay-switching and computer circuits.  
It was published in A.I.E.E. Transactions in 1938.   For this 
work, Shannon was awarded the Alfred Nobel Prize of the 
combined engineering societies of the United States in 
1940.  In 1948, Shannon published his most important work 
on information theory and communication, “A 
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Mathematical Theory of Communication”, where he demonstrated that all information 
sources have a “source rate” and all communication channels have a “capacity”, both 
measurable in bits-per-second, and that the information can be transmitted over the 
channel if and only if the capacity of the channel is not exceeded by the source rate.  He 
also published works related to cryptography and the reliability of relay circuits, both 
with respect to transmission in noisy channels.xvii 
 
George Stibitz, a Bell Labs researcher, created the first electromechanical circuit that 
could control binary addition from old relays, batteries, flashlight bulbs, wires and tin 
strips in 1937.  He realized that Boolean logic could be used for electromechanical 
telephone relays.  He incorporated this binary adder (picture on left with Stibitz) 
prototype in his Model K digital calculator.  Over the next two years, Stibitz and his 
associates at Bell Labs devised a machine to perform all four basic math operations on 
complex numbers.  It was initially called the Complex Number Calculator but was 
renamed the Bell Labs Model Relay Computer (also known as the Bell Labs Model 1) in 
1949.  This machine is considered to be the world's first electronic digital computer.  Its 
electromechanical brain consisted of 450 telephone relays and 10 crossbar switches, and 
three teletypewriters provided input to the machine.  It could find the quotient of two 
eight-place complex numbers in about 30 seconds.  Stibitz brought one of the typewriters 

to an American 
Mathematical 
Association 
meeting in 1940 
at Dartmouth 
and performed 
the world's first 
demonstration 
of remote 
computing by 
using phone 
lines to 
communicate 
with the 
Complex 
Number 
Calculator, 
which was in 
New York.xviii 
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In 1937, Alan Turing (1912 - 1954) published his 
paper “On Computable Numbers, with an 
application to the Entscheidungsproblem (decision 
problem)”.  In this paper, he introduced the Turing 
Machine, which was an abstract machine capable of 
reading or writing symbols and moving between 
states, dependent upon the symbol read from a bi-
directional, movable tape, using a set of finite rules 
listed in a finite table.  This machine demonstrated 
that every method found for describing ‘well-
defined procedures’, introduced by other 
mathematicians, could be reproduced on a Turing 
machine.  This statement is known as the Church-
Turing thesis and is a founding work of modern 
computer science, which defined computation and 
its absolute limitation.  His definition of computable 
was that a problem is ‘Calculable by finite means’.  

In 1938, his Ph.D. thesis, which was published as “Systems of Logic based on Ordinals” 
in 1939, Turing addressed uncomputable problems. 
 
During World War II, Turing worked at Bletchley Park, 
the British government's wartime communications 
headquarters.  His main task was to master the Enigma 
(pictured right), the German enciphering machine, 
which he was able to crack, providing the Allies with 
valuable intelligence.  His contributions made him a 
chief scientific figure in the fields of computation and 
cryptography.  After the war, he was interested in the 
comparison of the power of computation and the power 
of the human brain.  He proposed the possibility that a 
computer, if properly programmed, could rival the 
human mind.  In 1950, Turing wrote his famous paper 
"Computing Machinery and Intelligence," which, along 
with his previous work, founded the study of ‘Artificial 
Intelligence’.  This paper introduces ‘the imitation 
game’, which is a test to determine if a computer 
program has intelligence.  This game is now referred to 
as the Turing Test.  Turing describes the original 
imitation game as: 
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“The new form of the problem can be described in terms of a game which we call the 

‘imitation game.’ It is played with three people, a man (A), a woman (B), and an 

interrogator (C) who may be of either sex. The interrogator stays in a room apart from 

the other two. The object of the game for the interrogator is to determine which of the 

other two is the man and which is the woman. He knows them by labels X and Y, and at 

the end of the game he says either "X is A and Y is B" or "X is B and Y is A." The 

interrogator is allowed to put questions to A and B.”  
 
The idea in the Turing Test is that the interrogator (C) is actually communicating with 
human (A), a machine (B).  The interrogator asks the two candidates questions to decide 
their identities, as above with the man and woman.  In order to prove that it’s program is 
intelligent, the machine must fool the interrogator into choosing it as the human.xix 
 

Between 1937 and 
1938, John 
Vincent Atanasoff 
(far left) and 
Clifford Berry 
devised the 
principals for the 
ABC machine 
(right), an 
electronic-digital 
machine that 
would lead to 
advances in digital computing machines.  This non-
programmable binary machine’s construction began in 1941 
but was stopped in 1942 due to World War II before 
becoming operational.  This machine employed capacitors to 
store electrical charge that could correspond to numbers in 
the form of logical 0’s and 1’s.  This was the first machine to 
demonstrate electronic techniques in calculation and to use 
regenerative memory.  It contained 300 vacuum tubes in its 

arithmetic unit and 300 more in its control unit.  The capacitors were affixed inside of 12-
inch tall by 8-inch diameter rotating Bakelite (a thermosetting plastic) cylinders (shown 
below) with metal contact bands on their outer surface.  Each cylinder contained 1500 
capacitors and could store 30 binary numbers, 50 bits in length, which could be read from 
or written to the metal bands of the rotating cylinder.  The input data was loaded on 
punched cards.  Intermediate data was also stored on punched cards by burning small 
spots onto the cards with electric sparks, which could be re-read by the computer at some 
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later time by detecting the difference in electrical resistance of the carbonized burned 
spots.  This machine could also convert from binary to decimal and vice versa.xx  
 

 
 
In 1943, the U.S. Army contracted with the Moore School of Electrical Engineering, 
University of Pennsylvania, for the production of the Electrical Numerical Integrator and 
Computer (ENIAC), which would be used to calculate ballistic tables, which was 
designed by J. Presper Eckert (1919-1995) and John Mauchly (1907-1980).  The 30-ton 
machine with approximately 18,000 vacuum tubes was completed in 1946 and was 
contained in a 30’ by 50’ room. 
 
The ENIAC was a general-purpose digital electronic computer that could call 
subroutines.  It could reliably perform 5,000 additions or 360 multiplications per second, 
which was between 100 and 1000 times faster than existing technology.  At the time of 
its introduction, ENIAC was the world’s largest single electronic apparatus.  This 
machine was separated into thirty autonomous units.  Twenty of these were accumulators, 
which were ten-digit, high-speed adding machines with the ability to store results.  These 
accumulators used electronic circuits called ring counters, a loop of bistable devices (flip-
flops) interconnected in such a manner that only one of the devices may be in a specified 
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state at one time, to count each of 
its digits from 0 to 9 (a decimal 
arithmetic unit).  The machine 
also had a multiplier and divider-
square rooter, which special 
devices to accelerate their 
respective arithmetic operations. 
 
A “computer program” on 
ENIAC was entered by using 
wires to connect different units 
of the machine as to perform 
operations is a required 
sequence.  The picture on the left 
shows two women entering a 
program, which was a very 

difficult task.  The machine was controlled by a sequence of electronic pulses, in which 
each unit on the machine could issue a pulse to cause one or more other units to perform 
a computation.  The control and data signals on ENIAC were identical, typically were 2 
microsecond pulses placed at ten microsecond intervals, which could allow for the output 
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of an accumulator to be attached to the input of a control line of another accumulator.  
This could allow data-sensitive operations or operations based on data content.  It also 
had a unit called the “Master Programmer”, which performed nested loops or iterations.  
ENIAC’s units could operate simultaneously, performing parallel calculations.  
Eventually this machine could perform IF-THEN conditional branches.  It is likely that 
this was the first machine with this operation.xxi 
 

 
In 1944, because of suggested improvements from people involved with the project, the 
U.S. Army extended the ENIAC project to include research on Electronic Discrete 
Variable Automatic Computer (EDVAC), a stored program computer.  At about this 
time, John von Neumann (1903 - 1957) visited the Moore School to take part in 
discussions regarding EDVAC’s design.  He is best known for producing the best-
recognized formal description of a modern computer, based on a stored program 
computer, known as the von Neumann architecture, in his 1946 paper "First Draft of a 
report to the EDVAC".  The basic elements of this architecture are: 
 



Synergy User Manual and Tutorial 

30 

• A memory, which contains both data and instructions and also allows both data 
and instruction locations to be read from, and written to, in any order. 

• A calculating unit, which can perform both arithmetic and logical operations on 
the data. 

• A control unit, which can interpret retrieved memory instructions and select 
alternative courses of action based on the results of previous operations. 

 
The EDVAC was a multipurpose binary computing machine with a memory capacity of 
1,000 words, which was more than any other computing device of its time.  Its memory 
worked by using mercury delay lines, tubes of mercury in which electrical impulses were 
bounced back and forth, creating a two-state device for storing 0’s and 1’s, which could 
be assigned or retrieved at will.  It used 12 of 16 possible 4-bit instructions and each word 

in memory had 44 bits.  The integer range was ±1-243 and the floating-point numbers had 

a 33-bit mantissa, 10 bit exponent and 1 bit for the sign, with a range ± (1-2-33)2511.  It 
had approximately 10,000 crystal diodes and 4,000 vacuum tubes. Its average error-free 
up-time was about 8 hours.  Its magnetic drum could hold 4,608 words 48 bits in length 
and a block transfer length of between 1 and 384 words.  It also had a magnetic tape 
storage system that could store 112 characters per inch on a magnetic wire that was 
between 1,250 and 2500 feet long with a variable block length of between 2 and 1024 
words also 48 bits long.  During searches of the tape the machine could be released for 
computation and data read from the tape could be automatically re-recorded to the same 
place on the tape.  EDVAC’s input devices consisted of a photoelectric tape reader could 
read 78 words per second and an IBM card reader that could read 146 cards per minute at 
8 words per card.  The output devices were a 30 word per minute paper tape perforator, a 
30 word per minute teletypewriter and a 1000 word per minute cardpunch.  This machine 
had a clock speed of 1 MHz and was a significant improvement over ENIAC.xxii 
 

Thomas Flowers and 
crew started 
construction on the 
Mark 1 COLOSSUS 
computer in 1943 at 
Dollis Hill Post Office 
Research Station in the 
U.K.  Max Newman 
and associates of 
Bletchley Park (‘Station 
X’), Buckinghamshire, 
designed this machine, 
which was primarily 
intended for 



Synergy User Manual and Tutorial 

31 

cryptanalysis of German Fish teleprinter ciphers used during World War II.  This 
electromechanical attempt at a one-time pad was the German military’s most secure 
method of communication.  Prior to knowledge of Zuse’s Z3, this was considered to be 
the first totally electronic computing device, using only vacuum tubes as opposed to 
relays in the Z3.  This special purpose computer was equipped with very fast optical 
punch card readers for input.  Nine of the improved Mark II machines were constructed 
and the original COLOSSUS Mark I was converted, for a total of ten machines.  These 
machines were considered to be of the highest level of secrecy.  After the end of the war, 
by direct orders from Churchill, all ten machines were destroyed—reduced into pieces no 
larger than a man’s hand.  The COLOSSUS, Heath Robinson (precursor to the 
COLOSSUS) and the Bombe (a machine designed by Alan Turing) are all in the process 
of reconstruction to preserve these important achievements. 
 

 
 
The Universal Automatic Computer I (UNIVAC I) was designed by J. Presper Eckert and 
John Mauchly in 1947.  The machine, constructed by Eckert-Mauchly Computer 
Corporation, founded by Eckert and Mauchly in 1946 but later purchased by Sperry-
Rand, was delivered to the US Census Bureau in 1951 at a cost of $159,000.  By 1953, 
three UNIVACs were in operation and by 1958 there were forty-six in the service of 
government departments and private organizations.  Rand sold the later machines for 
more than $1,000,000 each. 
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UNIVAC’s input consisted of 12,800 character per second magnetic tape reader, a 240 
card per minute card to tape converter and a punched paper tape to magnetic tape 
converter.  Its output consisted of a12,800 character per second magnetic tape reader, a 
120 card per minute card to tape converter, a 10 character per second character printer, a 
Uniprinter (a 600 line per minute high-speed line printer developed by Earl Masterson in 
1954) and a 60 word per minute Rad Lab buffer.  This was the first machine to use a 
buffered memory.  It had 5,200 vacuum tubes, 18,000 crystal diodes, 300 relays and 
contained a mercury delay line memory that could hold 1,000 words 72 bits in length (11 
decimal digits plus sign).  The 8 ton, 25 by 50 feet machine consumed 125,000 Watts of 
power—31,250 times as much as a desktop computer (the average desktop consumes less 
than 400 Watts).  It could perform 1,900 additions, 465 multiplications or 256 divisions 
per second.  The machine also had a character set, similar to a typewriter keyboard, with 
capital letters.  In 1956 a commercial UNIVAC computer was introduced that used 
transistors. 
 

 
 
In 1943, the Massachusetts Institute of Technology (MIT) started the Whirlwind Project, 
under the supervision of Jay Forrester, for the U.S. Navy after determining that it was 
possible to produce a computer to run a flight simulator for training bomber crews.  
Initially, they attempted to use an analog machine but found that it was neither flexible 
nor accurate.  Another problem was the typical batch-mode computers of the day were 
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not computationally sufficient for 
time constrained processing because 
they could not continually operate on 
continually changing input.  
Whirlwind also required much more 
speed than typical computational 
systems.  The design of this high-
speed stored-program computer was 
completed by 1947 and 175 people 
started construction in 1948.  The 
system was completed in three years, 
when the U.S. Air Force picked it up 
because the Navy had lost interest, 

renaming it Project Claude.  This machine was too slow and improvements were 
implemented to increase performance.  The initial machine used Williams tubes, cathode 
ray tubes that were used to store electronic data, which were unreliable and slow.  
Forrester expanded on the work of An Wang, who created the pulse transfer-controlling 
device in 1949.  The product was magnetic core memory (upper left), which permanently 
stores binary data on tiny donut shaped magnets strung together by a wire grid.  This 
approximately doubled the memory speed of the new machine, completed in 1953.  
Whirlwind was the world’s first real-time computer and the first computer to use the 
cathode ray tube, which at this time was a large oscilloscope screen, as a video monitor 
for an output device. 
 

The new machine was used in the 
Semi Automated Ground 
Environment (SAGE), which was 
manufactured by IBM and became 
operational in 1958.  The picture on 
the right shows a SAGE terminal. 
This system coordinated a complex 
system of radar, telephone lines, 
radio links, aircraft and ships.  It 
could identify and detect aircraft 
when they entered U.S. airspace.  
SAGE was contained in a 40,000 
square foot area for each two-system 
installation, had 30,000 vacuum 

tubes, had a 4k by 32-bit word magnetic drum memory and used 3 megawatts of power.  
In 1958, the Whirlwind project was also extended to include an air traffic control system.  
The last Whirlwind-based SAGE computer was in service until 1983.xxiii 
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In 1946, work started on the Electronic Delay Storage Automatic Calculator (EDSAC), a 
serial electronic calculating machine, at Cambridge.  It was contained in a 5 by 4 meter 
room, had 3000 valves, consumed 12,000 Watts and could perform 650 instructions per 
second at 500kHz.  Its mercury ultrasonic delay line memory could 1024 words 17 bits in 
length (35-bit “long” digits could be contained by using two adjacent memory “tanks”) 
and had an “Operating System” (called “initial orders”) that was stored in 31 words in 
read-only memory”.  The input device consisted of a 6⅔ character per second 5-track 
teleprinter paper tape reader and output was performed on a 6⅔ character per second 
teleprinter.  A commercial version of EDSAC, called LEO, which was manufactured by 
the Lyons Company, began service in 1953.  Cambridge was the first university in the 
world to offer a Diploma in Computer Science, using EDASC, which was initially a one-
year post graduate course called Numerical Analysis and Automatic Computing.xxiv 
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In 1948, at the University of Manchester in England, the Small Scale Experimental 
Machine, nicknamed the “Baby”, successfully executed its first program, becoming 
world's first stored-program electronic digital computer.  Frederic C. Williams (1911 - 
1977) and Tom Kilburn (1921 - 2001) built the machine to test the Williams-Kilburn 
Tube (type of memory composed of cathode vacuum tubes storing one bit of information 
on a cathode ray tube, illuminating a point on the screen that stays on) for speed and 
reliability, and to demonstrate the feasibility of a stored program computer.  Its success 
prompted the development of the Manchester Mark I, a useable computer based on the 
same principals.  The picture shows the “Baby” (replica), the shortest cabinet at the right, 
and the Mark I, the six taller cabinets. 
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The picture on 
the left shows 
Williams and 
Kilburn at the 
console of the 
Manchester 
Mark I.  It was 
built in 1949 
and could 
store data in 
addressable 
"line"s, 
holding one 
40-bit number 
or two 20-bit 
instruction 
registers, and 
had two 20-bit 

address modifier registers, called "B-lines" (for modifying addresses in instructions), 
which functioned either as index registers or as base address registers.  This Mark I was 
of historical significance because it is the first machine to include this index/base register 
in its architecture, which was a very important improvement.  It was the first Random 
Access Memory computer.  It could perform serial 40-bit arithmetic, with hardware add, 

subtract and multiply (with an 80-bit 
double-length accumulator) and logical 
instructions.   The average instruction 
time was 1.8 milliseconds (about 550 
additions per second), with 
multiplication taking much longer.  It 
had a single-address format order code 
with about 30 function codes.  The 
machine used two Williams tubes for 
its 128 words of memory.  Each tube 
contained 64 rows with 40 points (bits) 
per row, which was two “page”s (A 
page was an array of 32 by 40 points).  
It also had a 128 page capacity drum-
backing store, 2 pages per track, about 
30 milliseconds revolution time on 2 
drums (each drum could hold up to 32 
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tracks, i.e. 64 pages). 
 
The machine’s peripheral instructions included a “read” from a 5-hole paper tape  reader, 
on which the code was normally entered, and “transfer” a page or track to or from a 
Williams-Kilburn Tube page or pair of pages in storage.  It also had a bank of 40 (8 by 5) 
buttons that could be used to set the ones in a word in storage.  There were also additional 
switches that controlled the operations of the Mark I.  The current storage contents could 
be viewed on the machine’s display tube, shown on the left, which was organized into 8 
columns of 5-bit groups. There was a direct correspondence between the symbols, each 
made up of a 5-bit group, on the punched cards and the symbols on the display tube.  The 
government awarded the contract to mass-produce Mark I computers to Ferranti Ltd., 
which was the world’s first commercially available computer.  Kilburn wrote the first 
electronically stored computer program for the Mark I and also established the world’s 
first university computer science department at Manchester.xxv 
 
There were substantial improvements in computer programming and user interface design 
as well as hardware architecture.  John Mauchly (ENIAC and UNIVAC) developed Short 
Order Code, which is thought to be the first high-level language in 1949, for the Binary 
Automatic Computer (BINAC) computer.  The BINAC, completed in 1949, was designed 
for Northrop Aviation and was the first computer to use a magnetic tape.  In 1951, David 
Wheeler, Maurice Wilkes, and Stanley Gill introduced sub-programs and the “Wheeler 
jump”, to implement them by moving to a different section of instructions and returning 
to the original section after the sub-program is finished.  Maurice Wilkes also originated 
the concept of micro-programming, which is a technique for providing an orderly 
approach to designing the control section of a computer system. 
 

In 1951, while working with the UNIVAC I 
mainframe, Betty Holberton (left) created the sort-
merge generator, which was predecessor to the 
compiler and may have been the first useful 
program that had the capability of generating other 
programs for the UNIVAC I, and developed the C-
10 instruction code, which controlled the its core 
functions.  The C-10 instruction code allowed 
UNIVAC to be controlled by a control console 
(keyboard) commands instead of switches, dials and 
wires, which made the system much more useful 
and human friendly.  The code was designed to use 
mnemonic characters to input instructions, such as 
‘a’ for add.  She later was the chairperson for the 
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committee that established the standards for the Common Business Oriented Language 
(COBOL).xxvi 
 

In 1952, Grace Murray Hopper developed A-0, which is believed 
to be the first real compiler or an intermediary program that 
converts symbolic mathematical code into a sequence of 
instructions that can be executed by a computer.  This allowed 
the use of specific call numbers assigned to the collected 
programming routines that were stored on magnetic tape, which 
the computer could find and execute.  In the same year she 
developed a compiler for business use, B-0 (later renamed 
FLOW-MATIC) that could translate English terms and wrote a 
paper that described the use of symbolic English notation to 
program computers, which is much easier to use than machine 
code that was previously used.  While working on the UNIVAC 

I, she encouraged programmers to reuse common pieces 
of code that were known to work well, reducing 
programming errors.  She was on the CODASYL Short 
Range Committee to define the basic COBOL language 
design, which appeared in 1959 and were greatly 
influenced by FLOW-MATIC.  COBOL was launched in 
1960 and was the first standardized computer 
programming language for business applications.  
Various computer manufacturers and the Department of 
Defense supported development of the standard.  It was 
intended to solve business problems, be machine 
independent and to be updated.  COBOL has been 

updated and improved over the years, and is still used today.  Hopper spent many years 
contributing to the standardization of compilers, which eventually led to international and 
national standards and validation facilities for many programming languages.xxvii 

 
In 1956, John Backus and his IBM team created the first 
FORTRAN (short for FORmula TRANslation).  The initial 
compiler consisted of 25,000 lines of machine code, which 
could be stored on magnetic tape.  Backus and team wrote 
the paper “Preliminary Report, Specifications for the IBM 
Mathematical FORmula TRANslating System, FORTRAN” 
to communicate their discovery and to show that scientists 
and mathematicians could program without actually 
understanding how the machines worked or without 
knowing assembly language.  It works by using a software 
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device called a translator, which contains a parser to translate the high-level language that 
could be read by people to a binary language that can be executed on a computer.  A later 
version of FORTRAN is still in use today, over 40 years later.  Backus also developed a 
standard notation, Backus-Naur Form (BNF), to unambiguously and formally describe a 
computer language.  BNF uses grammatical-type rules to describe a language. 
 

In 1947, a major event occurred in 
electronics and computation.  John 
Bardeen, Walter Brattain and William 
Shockley (pictured in order on left) 
announced that they developed the 
transistor for which they were 
awarded the Nobel Prize in 1956.  
This invention ushered in a new era in 
computers.  First generation 

computers used vacuum tubes as their principal digital circuits.  Vacuum tubes generated 
heat, consumed electrical power and quickly burned out, requiring frequent maintenance.  
They were also used in telecommunications to amplify long distance phone calls, which 
is the reason for this team’s research.  Transistors can switch and modulate electronic 
current, and are composed of a semi-conductor that can both conduct and insulate, such 
as germanium or silicon.  The transistor can act as a transmitter by converting sound 
waves into electronic waves and a resistor by controlling electrical current.  In 1954, 
Texas Instruments lowered the cost of production by introducing silicon transistors.  The 
transistor brought about the second generation in computers by replacing vacuum tubes 
with solid-state components, which began the semiconductor revolution. xxviii  Philco 
Corporation engineers developed the surface barrier transistor in 1954, which was the 
first transistor suitable for use in high-speed computers.  In 1957, Philco completed the 

TRANSAC S-2000—the first large-scale, fully transistorized 
scientific computer to be offered as a manufactured 
product.xxix 
 
In 1957, the Burroughs Atlas computer, constructed at the 
Great Valley Research Laboratory outside of Philadelphia, 
was one of the first to use transistors.  The machine was 
developed for the America air defense system deployed 
during the 1950’s and was the ground guidance computer for 
the Atlas intercontinental ballistic missile (ICBM).  The first 
launch was in 1958.  The system had two memory areas, one 
for data with 256 24-bit words and one for instructions with 
2048 18-bit words.  There were 18 Atlas computers 
constructed, costing $37 million.xxx 
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After the launch of Sputnik (NASA recreated model pictured on left) by the U.S.S.R. in 
1957, The U.S. government responded by forming the Advanced Research Projects 
Agency (ARPA) to ensure technological superiority by expanding new frontiers of 
technology beyond immediate requirements.  Initially ARPA's mission concerned issues, 
including space, ballistic missile defense, and nuclear test detection.  The major 
contribution that ARPA made to computer technology was the Advanced Research 
Projects Agency Network (ARPANET). 
 

In 1960, Paul Baran of the RAND Corporation 
published studies on secure communication 
technologies that would allow military 
communications to continue operations after a nuclear 
attack.  He discovered two important ideas that outline 
the packet-switching principal for data 
communications: 
 

1. Use a decentralized network having multiple 
paths between any two points, which allows 
single points of failure from which the system 
could automatically recover 

2. Divide complete user messages into blocks 
before sending them into the network 
 
In 1961, Leonard Kleinrock performed research 
on “store and forward” messaging, where 
messages are buffered completely on a switch or 
router, checksummed to find if an error exists in 
the message, and sent to the next location.  In 
1962, J.C.R. Licklider from MIT discussed the 
“Gallactic Network” concept in a series of 
memos.  These computer network ideas 
represent the same type of general 
communication system as is used in the Internet.  
The same year that he wrote these memos, 
Licklider was working at ARPA and was able to 
convince others that this was an important idea.  
In 1966, Lawrence G. Roberts from MIT was 
brought in to head the APRANET project to 
build the network.  Roberts’ "plan for the 
ARPANET" was introduced at a symposium in 



Synergy User Manual and Tutorial 

41 

1967, which included a time-sharing scheme using smaller computers to facilitate 
communication between larger machines as suggested by Wesley Clark.  An updated 
plan was completed in 1968, which included packet switching.  The contract to construct 
the network was awarded to Bolt, Beranek and Newman in early 1969.  The first 
connected network consisted of four nodes between UCLA, the Stanford Research 
Institute, UCSB, and University of Utah.  It was completed in December 1969.  The 
ARPANET was the world’s first operational packet switched network.  Packet switching 
was a new concept that allowed more than one machine to access one channel to 
communicate with other machines.  Previously these channels were switched and only 
allowed one machine to communicate with one other machine at a time.  By 1973, the 
University College of London in England and the Royal Radar Establishment in Norway 
connect to the ARPANET, making it an international network. 
 
With the advent of computer internetworking came new innovations to facilitate 
communication between machines.  One innovation formulated by Robert Kahn and Vint 
Cerf was to make host computers responsible for reliability, instead of the network as 
was done in the initial ARPANET.  This minimized the role of the network, which made 
it possible to connect networks and machines with different characteristics and, made the 
development of the Transmission Control Protocol (TCP)—to check, track and correct 
transmission errors and the Internet Protocol (IP)—to manage packet switching.  The 
TCP/IP suite is arranged as a layered set of protocols, called the TCP/IP Stack, which 
defines each layers responsibilities in the connectionless transmission of data and 
interfaces that allow the passing of data between each layer.  Because the interfaces 
between each layer are standardized and well defined, development of hardware and 
software is possible for different purposes, and from different architectures.  The TCP/IP 
protocols replaced the Network Control Protocol (NCP), the original ARPANET 
protocol, and the military part of ARPANET was separated, forming MILNET, in 1983.  
The initial network restricted commercial activities because it was government funded. 
 
In the early 1970’s, message exchanges that were initially available on mainframe 
systems became available across wide area networks.  In 1972, Ray Tomlinson 
introduced the “name@computer” addressing scheme to simplify e-mail messaging, 
which is still in use today.  In 1972, the Telnet standard for terminal emulation over 
TCP/IP networks, which allows users to log onto a remote computer, was introduced.  It 
enables users to enter commands on offsite computers, executing the as if they were 
using the remote systems own console.  In 1973, the File Transfer Protocol (FTP) was 
developed to facilitate the long-distance transfer of files across computer networks.  The 
Unix User Network (Usenet) was created in 1979 to facilitate the posting and sharing of 
messages, called “articles”, to network distributed bulletin boards, called “newsgroups”.  
In the mid 1980’s the Domain Name System used Domain Name Servers to simplify 
machine identification.  Instead of using a machines IP address, such as “10.192.20.128”, 
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a user only need remember the machines domain name, such as “thismachine.net”.  By 
1982, commercial e-mail service was available in 25 cities and the term “Internet” was 
designated to mean a “connected set of computer networks”.  In 1983, the complete 
change to TCP/IP created a truly global “Internet”. 
 
National Science Foundation (NSF) became involved in ARPANET in the mid 1980’s.  
In 1986, the NSFNet Backbone was started to connect and provide access to 
supercomputers.  In the late 1980’s, the Department of Defense stopped funding for 
ARPANET and the NSF assumed responsibility for long-haul connectivity in 1989.  The 
first Internet Service Providers (ISP) companies also appeared, servicing regional 
research networks and providing access to email Usenet News for the public.    The NSF 
initiated the connection of regional TCP/IP networks and the Internet began to emerge.  
In the 1990’s, commercial activity was allowed and the Internet grew rapidly.  
Eventually, this commercial activity created competition and commercial regional 
providers, called Network Access Points (NAP’s) took over backbones and 
interconnections, causing NSFNet to be dropped and the removal of all existing 
commercial restrictions. 
 

In 1989, Tim Berners-Lee invented the Uniform 
Resource Locator (URL) and Hypertext Markup 
Language (HTML), which were inspired by Vannevar 
Bush's "memex".  The URL provides a simple way to 
find specific documents on the Internet by using the 
name of the machine, the name of the document file 
and the protocol to obtain and display the file.  HTML 
is a method to set the format a document by 
embedding codes, which can also be used to designate 
hypertext—text that can be “clicked” on with a mouse 
pointer to cause some action or to retrieve another 
document.  Eventually it was possible to place 
graphics and sound in documents, which started the 
World Wide Web (WWW), and many of the services 
that are now available on the Internet.  By 1997, 150 
countries and 15 million host computers were 

connected to the Internet, and 50 million people were using the World Wide Web.  By 
1990, approximately 9 million people will send over 2.3 billion e-mail messages.xxxi 
 
In 1958, the ALGOrithmic Language (ALGOL) 58 high-level scientific programming 
language was formalized.  It was designed to be a universal language by an international 
committee.  It was the first attempt at software portability to provide a machine 
independent implementation.  ALGOL is considered to be an important language because 
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it influenced the development of future languages.  Almost all languages have been 
developed with “ALGOL-like” lexical and syntactic structures that have hierarchal, 
nested environment and control structures.  ALGOL 60 had block structure for statements 
and the ability to call subprograms by name or by value.  It also had if-then-else control 
statements for iteration and with recursive ability.  ALGOL has a small number of basic 
constructs with a non-restricted associated type and rules to combine them into more 
complex constructs, of which some can produce values.  ALGOL also had dynamic 
arrays wit variable specified subscript ranges, reserved words for key functions that could 
not be used as identifiers, and user defined data types to fit particular problems.  A 
sample ALGOL source code “Hello World!” program from the Web site referenced for 
this information that runs on a Unisys A-series mainframe is:xxxii 
 
BEGIN 
FILE F (KIND=REMOTE); 
EBCDIC ARRAY E [0:11]; 
REPLACE E BY "HELLO WORLD!"; 
WHILE TRUE DO 
  BEGIN 
  WRITE (F, *, E); 
  END; 
END. 

 
As of 1959, more that 200 programming languages had been created. 

 
Between 1958 and 1959, both 
Texas Instruments and Fairchild 
Semiconductor Corporation were 
introducing integrated circuits 
(IC).  TI’s Jack Kirby, an 
engineer with a background in 
transistor-based hearing aids, 
introduced first IC (pictured left 
from CNN), which was based on 
a germanium semiconductor.  
Soon after, one of Fairchild’s 
founders and research engineers, 
Robert Noyce, produced a 
similar device based on a silicon 
semiconductor.   The monolithic 

integrated circuit combined transistors, capacitors, resistors and all connective wiring on 
a single semiconductor crystal or chip.  Fairchild produced the first commercially 
available ICs in 1961.  Integrated circuits quickly became the industry standard 
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architecture for computers.  Robert Noyce later founded Intel.  Jack Kirby had 
commented: 
 
"What we didn't realize then was that the integrated circuit would reduce the cost of 

electronic functions by a factor of a million to one, nothing had ever done that for 

anything before" 
xxxiii 

 
 In 1960, The 
Remington Rand 
UNIVAC delivered 
the Livermore 
Advanced Research 
Computer (LARC) 
computer to the 
University of 
California Radiation 
Laboratory, now 
called the Lawrence 
Livermore National 
Laboratory.  This 
machine had four 
major cabinets that 
were approximately 
20 feet long, 4 feet 
wide and 7 feet tall.  

One cabinet contained the I/O processor to route and control input and output, another 
had the computational unit to perform computational activity, and the last two contained 
16K of ferrite core memory.  There were also twelve floating head drums, rotating 
cylinders coated with a magnetic material, that were approximately 4 feet wide, 3 feet 
deep and 5 feet high, which were used as storage devices.  Each drum could store 
250,000 12-decimal-digit LARC words—almost 3 Megs on its 12 drums.  There were 
also two independent controllers for read and write operations.  There were also eight 
tape head units that could hold approximately 450,000 LARC words on each tape reel, 
deducting storage overhead.  Its printer could print 600 lines per minute and had a 51 
alphanumeric characters set.  There was a punch card reader and a control console with 
toggle switches to control the system (pictured above).  The LARC performed decimal 
mode arithmetic operations to 22 decimal digits and could perform 12x12 addition in 4 
microseconds and 12x12 multiplication in 12 microseconds, with division taking a little 
bit longer.  The machine used storage, shift and result registers to store information 
during repetitive calculations.  LARC’s hardware was difficult to maintain due to its 
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discrete nature, being comprised of a collection of transistors, resistors, capacitors and 
other electronic components.xxxiv 
 

In November of 1960, Digital 
Equipment Corporation (DEC) 
started production of the world’s 
first commercial interactive 
computer, the PDP-1 (left).  The 
$120,000 machine’s four cabinets 
measured approximately 8 feet in 
length.  A DEC technical bulletin 
describes it as:   
 
"...a compact, solid state general 

purpose computer with an internal 

instruction execution rate of 

100,000 to 200,000 operations per 

second. PDP-1 is a single address, 

single construction, stored program 

machine with a word length of 18-

bits operating in parallel on 1's 

complement binary numbers." 

 
It had a 4000 18-bit word memory.  
It was the first computer with a 
typewriter keyboard and a cathode-
ray tube display monitor.  It also 
had a light pen, which made it 

interactive, and a paper punch output device.  Producing 50 of these machines made DEC 
the world’s first mass computer maker.xxxv 
 
Between 1961 and 1962, Fernando Corbató of MIT developed Compatible Time-Sharing 
System (CTSS) as part of Project MAC, which was one of the first time-sharing 
operating systems that allowed multiple users to share a single machine.  It was also the 
first system to have formatting text utility and one of the first to have e-mail capabilities.  
Louis Pouzin developed RUNCOM for CTSS, the precursor of UNIX shell script, which 
executed commands contained in a file and allowed parameter substitution.  Multiplexed 
Information and Computing Service (Multics), the operating system that led to the 
development of UNIX, was also developed by project MAC.  This system was the 
successor to CTSS and was used for multiple-access computing.xxxvi 
 



Synergy User Manual and Tutorial 

46 

In 1962, the Telstar I communications satellite was 
launched and relayed the first transatlantic television 
signals.  The black and white image of an American flag 
was relayed from a large antenna in Andover, Maine to 
the Radome in Pleumeur-Bodou, France.  This was the 
first satellite built for active communications.  It 
demonstrated that a worldwide communication system 
was feasible.  The satellite was launched by NASA from 
Cape Canaveral, Florida, weighed 171 pounds and was 
34 inches in diameter.  On the same day, the Telstar I 

beamed the first satellite long distance phone call.  The satellite was in service until 1963.  
As of 2002, there were 260 active satellites in Earth’s orbit. 
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 In late 1962, the Atlas computer (left) entered service at the University of Manchester, 
England.  This was the first machine to have pipelined instruction execution, virtual 
memory and paging, and separate fixed and floating-point arithmetic units.  At the time it 
was the world’s most powerful computer capable of about 200,000 FLOPS.  It could 
perform the following arithmetic operations (approximate times): 
 
 

• Fixed-point addition in 1.59 microseconds 

• Floating-point add in 1.61 microseconds 

• Floating-point multiply in 4.97 microseconds 
 
The machine could timeshare between different peripheral and computing operations, 
was multiprogramming capable, had interleaved stores, had V-stores to store images of 
memory, had a one-level virtual store, had autonomous transfer units and ROM stores.  It 
had an operating system called the “Supervisor” to manage the computers processing 
time and scheduling operations and could compile high-level languages.  The machine 
had a 48-bit word size and a 24-bit address size.  It could store 16K words in its main 
ferrite core memory, interleaving odd and even address.  It had an additional 96K of 
storage in its four magnetic drum storage, which was integrated with the main memory 
using virtual memory or paging.  It also accessed its peripheral devices through V-store 
addresses and extracode routines.xxxvii 
 
In 1964, J. Kemeny and T. Kurtz, mathematics professors at Dartmouth College, 
developed the Beginner's All Purpose Symbolic Instruction Code (BASIC) as a simple to 
learn and interpret language that would serve to help students learn more complex and 
powerful languages, such as FORTRAN or ALGOL.xxxviii  In the same year, IBM 
developed its Programming Language 1 (PL/1), formerly known as New Programming 
Language (NPL), which was the first attempt to develop a language that could be used for 
many application areas.  Previously, programming languages were designed for a single 
purpose, such as mathematics or physics.  PL/1 can be used for business and scientific 
purposes.  PL/1 is a freeform language with no reserved keywords, has hardware 
independent data types, is block oriented, contains control structures to conditionally 
allow logical operations, supports arrays, structures and unions (and complex 
combinations of the three structures), and provides storage classes.xxxix 
 
 In 1962, Doug Englebart of the Stanford Research Institute published the paper: 
“Augmenting Human Intellect: A Conceptual Framework”.  His ideas proposed a device 
that would allow a computer user to interact with an information display screen by using 
a device to move a cursor on the screen—in other words, a mouse.  The actual device, 
shown on the left, was invented in 1964.xl  In the same year, the number of computers in 
the US grows to 18,000.  In 1972, Xerox Palo Alto Research Center (PARC) Learning 
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Research Group developed Smalltalk. 
This forerunner of Mac OS and MS 
Windows was the first system with 
overlapping windows and opaque pop-
up menus.  In 1973, Alan Kay invented 
the “office computer”, a forerunner of 
the PC and Mac.  Its design was based 
on Smalltalk, with icons, graphics and a 
mouse.  Kay stated at a 1971 meeting at 
PARC: 
 

"Don't worry about what anybody else is going to do… The best way to predict the future 

is to invent it. Really smart people with reasonable funding can do just about anything 

that doesn't violate too many of Newton's Laws!"
 xli
 

 
In 1973, R. Metcalfe and researchers at Xerox PARC developed the experimental Alto 
PC that incorporates a mouse, graphical user interface and Ethernet.  Within the same 
year, PARC’s Charles Simonyi developed Bravo text editor, the first “What You See Is 
What You Get—type” (WYSIWYG) application.  Metcalfe, later in the year, wrote a 
memo describing Ethernet as a modified “Alohanet”, titled “Ether Acquisition”.  By 
1975, Metcalfe developed the first Ethernet local area network (LAN).  By 1979, Xerox, 
Intel and DEC had announced support for Ethernet.  The Alto PC was officially 
introduced in 1981 with a mouse, built-in Ethernet and Smalltalk.  The commercial 
version, available the same year, was named the Xerox Star and was the forst 
commercially available workstation with a WYSIWYG desktop-type Graphical User 
interface (GUI). 
 

 In 1964, Control Data Corp. introduced the CDC 
6600 (left).  It was designed by supercomputer guru 
Seymour Cray, had 400,000 transistors and was 
capable of 350,000 FLOPS.  The 100 produced $7-
10 million machines had over 100 miles of electrical 
wiring and a Freon refrigeration system to keep the 
system’s electronics cool and were the world’s first 
commercially successful supercomputer.  The 
machine was also the first to have an interactive 
display the showed the graphical results of data, as it 
was processed in real-time. 
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 Between 1964 and 1965, DEC 
introduced the PDP-8 (left)—the 
world’s first minicomputer. It 
contained transistor-based circuitry 
modules and was mass-produced for 
the commercial market—the first 
computer sold as a retail product.  
During its initial offering at $18,000, 
it was the smallest and least 
expensive available parallel general-
purpose computer.  By 1973, the 
PDP-8, described as the “Model T” 
of the computer industry, was the 
best selling computer in the world.  

They had 12-bit words, usually with 4K words of memory, a robust instruction set and 
could run at room temperature.xlii 
 
In 1965, Maurice V. Wilkes proposes the use of cache memory—a smaller, faster, more 
expensive type of memory that hold a copy of part of main memory.  Access to entities in 
cache memory is much faster than that in main memory, which leads to better system 
performance.  The same year, Intel founder Gordon Moore proposed that the number of 
transistors on microchips would double every year.  The prediction was valid and came to 
be known as Moore’s Law.  Consider that a chip in 1964 that was 2½ cm2 had ten 
components and a chip in 1970 of the same size had about 1000. 
 
In 1967, Donald Knuth produced some of the work that would become “The Art of 
Computer Programming”.  He introduced the idea that a computer program’s algorithms 
and data structures should be treated as different entities than the program itself, which 
has greatly improved computer programming.  Volume 1 of The Art of Computer 
Programming was published in 1968. 
 
In 1967, Niklaus Wirth began to develop the Pascal structured programming language.  
The Pascal Standard (ISO 7185) states that it was intended to: 
 

• “make available a language suitable for teaching programming as a systematic 
discipline based on fundamental concepts clearly and naturally reflected by the 
language” 

• “to define a language whose implementations could be both reliable and efficient 
on then-available computers”xliii 
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Pascal, based on ALGOL’s block structure, was released in 1970.  An example “Hello 
World!” Program in Pascal is: 
 
Program Hello (Input, Output); 
Begin 
 Writeln ('Hello World!'); 
End. 
 
In 1968, Burroughs introduced the first computers that used integrated circuits—the 
B2500 and the B3500.  The same year Control Data built the CDC7600 and NCR 
introduced their Century series computer—both using only integrated circuits. 
 
In 1968, the Federal Information Processing Standard created the “The Year 2000 Crisis” 
by encouraging the “YYMMDD” six-digit date format for information interchange.  In 
1968, the practice of structured programming started with Edsger Dijkstra’s writings 
about the harm of the goto statement.  This lead to wide use of control structures, such as 
the while loop, to control iterative routines in programs.xliv  Between 1968 and 1969, 
NATO Science Committee held two conferences on Software Engineering, which is 
considered to be the start of this field.  From the 1960’s to the 1980’s, there was a 
“software crisis” because many software projects had undesirable endings.  Software 
Engineering arose from the need to produce better software, on schedule and within the 
anticipated budget.  Essentially, Software Engineering is a set of diverse practices and 
technologies used in the creation and maintenance of software for diverse purposes.xlv 
 
In 1969, Bell Labs withdrew support from Project MAC and the Multics system to begin 
development of UNIX.  Kenneth Thompson and Dennis Ritchie began designing UNIX 
in the same year.  The operating system was initially named Uniplexed Information and 
Computing System (UNICS) as a hack on Multics but was later changed.  In the 
beginning, UNIX received no financial support from Bell Labs.  Some support was 
granted to add text processing to UNIX for use on the DEC PDP-11/20.  The text 
processor was named runoff, which Bell Labs used to record patent information, and later 
evolved into troff, the world’s first publishing program with the capability of full 
typesetting.   In 1973, it was decided to rewrite UNIX in C, a high level language, to 
make it easily modifiable and portable to other machines, which accelerated the 
development of UNIX.  AT&T licensed use of this system to commercial, education and 
government organizations. 
 
In 1973, Dennis Ritchie developed the C programming language.  C is a high level 
programming language mainly to be used with UNIX.  A sample “Hello World!” 
program in C is: 
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#include <stdio.h> 
 
int main(){ 
printf ("Hello World!\n"); 
return 0; 
} 
 
 Later in 1983, Bjarne Stoustrup (right) added object 
orientation to C, creating C++, at AT&T Bell Labs.  In 
1995, Sun Microsystems released its object-oriented Java 
programming language, which was both platform 
independent and network compatible.  Java is an extension 
of C++ and C++ is an extension of C. 
 
By 1975, there were versions of UNIX using pipes for inter process communication 
(IPC).  AT&T released a commercial version, UNIX System III, in 1982.  Later, System 
V was developed by combining features from other versions, including U.C. Berkley’s, 
Berkeley Software Distribution (BSD), which contributed the Vi editor and curses.  
Berkley continued to work on BSD the noncommercial version and added Transmission 
Control Protocol (TCP) and the Internet Protocol (IP), known as the TCP/IP suite, for 
network communication to the UNIX kernel.  Eventually AT&T produced UNIX System 
V by adding system administration, file locking for file level security, job control, 
streams, the Remote File System and Transport Layer Interface (TLI) as a network 
application programming interface (API).  Between 1987 and 1989, AT&T merged 
System V and XENIX, Microsoft’s x86 UNIX implementation, into UNIX System V 
Release 4 (SVR4). 
 
Novel bought the rights for UNIX from AT&T to in an attempt to challenge Microsoft’s 
Windows NT, which caused their core markets to suffer.  Novel sold the UNIX rights to 
X/OPEN, an industry consortium that defined a version of the UNIX standard, who later 
merged with OSF/1, another standard group, to form the Open Group.  The Open Group 
presently defines the UNIX operating system.xlvi 
 

 In 1969, the RS-232 
standard, commonly 
referred to as a serial port, 
for serial binary data 

interchange between Data terminal equipment (DTE) 
and Data communication equipment (DCE) was 
established.xlvii 
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In 1970, RCA developed metal-oxide semiconductor 
(MOS) technology for fabricating integrated circuits, 
which made them smaller in size, cheaper and faster to 
produce.  The first chips using large-scale integration 
(LSI) were produced in the same year, containing up to 
15,000 transistors per chip.  In 1971, Intel introduced 
the world’s first mass produced, single chip, universal 
microprocessor, the Intel 4004 (left), which was 

invented by Federico Faggin, Ted Hoff, Stan Mazor and their 
engineering team.  It was a dual inline package (DIP) 
processor, which means that it had two rows of pins that were 
inserted into the motherboard.  The microprocessor can be 
thought of as a “computer on a chip”.  All of the thinking 
parts of the computer, central processing unit (CPU), 
memory, input and output (I/O) controls, were miniaturized 

and condensed onto a single 
chip.  The 4004 chip, based 
on the silicon-gated MOS 
technology, had more than 
2,300 transistors in an area 
of 12 square millimeters, a 
4-bit CPU that used 8-bit 
instructions, a command 
register, a decoder, 
decoding control, control 
monitoring of machine 
commands and an interim 
register.  The chip ran at a 
speed of 108 kHz and could 
process 60,000 instructions 

per second at a cost of $300.  It had sixteen either 4-
bit or 8-bit general-purpose registers and set of 45 
instructions.  It could address 1K of program 
memory and 4K of data memory.  Later models had 
clock speeds of up to 740KHz.  The picture on the 
lower left shows the 4004 motherboard and the 
picture on the right shows the chip die.  The Pioneer 
10 spacecraft, launched on March 2, 1972, used a 
4004 processor and became the first spacecraft (and 
microprocessor) to enter the Asteroid Belt.xlviii 
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In 1972, Intel offered the 8008 chip (left), 
which was the world’s first 8-bit 
microprocessor.  The 8008 had 3300 
transistors and even though its clock speed 
was 800 KHz it was slightly slower in 
instructions per second than the 4004 but 
because it was 8-bit, it could access more 
RAM and process data 3 to 4 times faster 
than the 4-bit chips.  In 1974, Intel released 
the 8080 chip (left), which had a 16-bit 
address bus and an 8-bit data bus.  It had a 
16-bit stack pointer, a 16-bit program 

counter and seven 8-bit registers, of which some could be combined for 16-bit registers.  
It also had 256 I/O ports to ensure that devices did not interfere with its memory address 
space.  It had a clock speed of 2 MHz, 64 KB of addressable memory, 48 instructions and 
vectored multilevel interrupts. 
 

In 1978, Intel introduced the 8086 chip 
(left)—the first 16-bit microprocessor.  
This chip had 29,000 transistors, using 
a 3.0-micron die core design and 300 
instructions.  It had a 16-bit bus 
compatibility for communication with 

peripherals.  The chips were available in 5, 6, 8, and 10 MHz clock speeds and had a 20-
bit memory address space that could address up to 1 MB of RAM.  Though the 8086 was 
available, IBM chose to use the 8088, the 8-bit version developed slightly later, because 
of the former chip’s great expense.xlix 
 

The Intel 80186, released in 
1980, had a 16-bit external 
bus, an initial clock speed of 
6 MHz and a 1.0-micron die.  
This chip was Intel’s first pin 

grid array (PGA) offering, 
meaning that the pins on the 
processor were arranged into 
a matrix-like array with the 
pins around the outside edge 
(upper right).  This popular 

chip was mostly used in imbedded systems and rarely used in PCs.  This model required 
less external chips than its predecessors.  It had an integrated system controller, a priority 
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interrupt controller, two direct memory access (DMA) channels (with 
controller), and timing circuitry (three timers).  It replaced 22 separate 
VLSI and transistor-transistor logic (TTL) chips and was more cost 
efficient than the chips it replaced.  In 1982, Intel developed the 80286 
processor, which had 134,000 transistors, a 1.5-micron die, and could 
address up to 16 megabytes of memory.  This microprocessor was the 
first to introduce the protected mode, which allowed the computer to 
multitask by running more than one program at a time by time-sharing 
the systems resources.  Its initial models ran at 8, 10 and 12.5 MHz but 
later models ran as fast as 20 MHz.  The 80386 processor was released in 
1985 with 275,000 transistors, a 1.0-micron die, a 32-bit instruction and 
a 32-bit memory address space that could address up to four gigabytes of 

RAM.  It had the ability to address up to 64 terabytes of virtual memory.  The initial 
clock speeds were 16, 20, 25, and 33 MHz.  It also had a feature called instruction 
pipelining, which allowed the processor to run the next instruction before finishing the 
previous instruction.  It had a virtual real time mode that allowed more than one running 
session of real time programs, a feature that is used in multitasking operating systems.  
This chip also had a system management mode (SMM), which could power down various 
hardware devices to decrease power use.  In 1989, Intel introduced the 80486 line of 
processors with 1.2 million transistors, a 1.0-micron die, and the same instruction and 
memory address size as the 386.  This was the first microprocessor to have an integrated 
floating-point unit (FPU).  Previously, CPUs had to have an external FPU, called a math 
coprocessor, to speed up floating-point operations.  It also had 8 kilobytes of on-die 
cache, which stored predicted next instructions for pipelining.  This saved an access to 
main memory, which is much slower than cache memory.  Later 486 models could 
operate at greater speeds that the maximum system bus speed.  The 486DX2/66 was a 
clock doubled 33 MHz to 66 MHz and the 486DX4/100 was clock a tripled 33 MHz to 
100 MHz. 
 

In 1993, Intel released the Pentium processor with 3.21 million 
transistors and a 0.8-micron die.  Clock speeds were available 
from 60 to 200 MHz, with a 60 MHz processor capable of 100 
MIPS.  It had the same 32-bit address space as the 386 and 486 
but had an external data bus width of 64 bits and a superscalar 
architecture (able to process two instructions per clock cycle), 
which allowed it to process instructions and data about twice as 
fast as the 486.  Internally, this chip was actually two 32-bit 
processors chained together that shared the workload.  It had 

two separate 8 KB caches (one data and one instruction cache) and a pipelined FPU, 
which could perform floating-point operations much faster than the 486.  Later versions 
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of the chip had symmetric dual processing—the ability to have two processors in the 
same system. 
 

In 1995, the Pentium Pro was released with 5.5 million 
transistors, a 0.6-micron die and a clock speed of up to 200 
MHz.  It was a reduced instruction set computer (RISC) 
processor.  RISC processors have a smaller set of instructions 
than complex instruction set computer processors.  The first 
computers were of CISC design to bridge semantic differences 
or gaps between low-level machine code and high-level 
programming languages, which reduced the size of computer 
programs and calls to main memory but did not necessarily 

improve system performance.  The main idea with RISC is to build more complex 
instructions using a sequence of smaller, simpler instructions.  Complex instructions have 
greater time and space overhead while decoding instructions, especially when microcode 
is used to decode macroinstructions.  There is a high probability that the frequency of 
instructions to be processed will be smaller rather than larger.  Limiting the number of 
instructions in a computer to a smaller optimized set can contribute to greater 
performance.  The Pentium Pro could process three instructions per clock cycle and had 
decoupled decoding and execution, which allowed the processor to keep working on 
instructions in other pipelines if one of the pipelines stops to wait for an event.  The 
standard Pentium would stop all pipelines until the event occurred.  It also had up to 1 
MB of onboard level-2 cache, which was faster than having the cache on the 
motherboard. 

 
In 1997, Intel released the Pentium MMX series of processors 
with 4.5 million transistors, clock speeds up to 233 MHz and a 
0.35-micron die size.  The MMX had 57 additional complex 
instructions that aided the CPU in performing multimedia and 
gaming instructions 10 to 20 percent faster than processors 
without the MMX instruction set.  The processor also had dual 
16K level-1 cache and improved dynamic branch prediction, an 
additional instruction pipe and a pipelined FPU. 

 
In 1993, Intel released the Pentium II, which had 27.4 
million transistors and a 0.25-micron die.  The 
Pentium II combined technology from both the 
Pentium Pro and the Pentium MMX.  It had the Pro’s 
dynamic branch prediction, the MMX instructions, 
dual 16K level-1 cache and 512K of level-2 cache.  
The level-2 cache ran at ½-speed and was not 
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attached directly to the processor, which yielded greater performance but not as much as 
if it were full-speed and attached.  The most notable change was the single edge contact 
(SEC), called the “Slot 1”, package design, which resembled a card more than it did a 
processor.  Initial chips had a 66 MHz bus speed but later models had a 100 MHz bus.  
The bus speed is the maximum speed that the processor uses to access data in main 
memory. 
 

In 1999, Intel released the Pentium III processor 
with 28 million transistors, a 0.18 die and a 450 
MHz clock speed.  This processor had 70 additional 
instructions that were extensions of the MMX set, 
called the SSE instruction set (also known as the 
MMX2 instruction set), which improved the 
performance of 3D graphics applications.  Later 
versions of the Pentium III increased the bus speed 
to 133 MHz and moved the level-2 cache off of the 

board and onto the CPU core.  Though Intel halved the memory to 256K, there was still a 
benefit to performance. 

 
In late 2000, Intel introduced the Pentium IV with 42 
million transistors, 0.13-micron die and a new NetBurst 
architecture to support future increases in speed.  NetBurst 
consists of the Hyper Pipelined Technology, the Rapid 
Execution Engine, the Execution Trace Cache and a 
400MHz system bus.  The Hyper Pipelined Technology 
doubled the width of the data pipe from 10 to 20 stages, 
which decreased the amount of work per stage and allowed 
it to handle more instructions.  A negative consequence of 
widening the data pipe is that it took longer to recover from 

errors.  A newer and advanced branch predictor aided the chip in hedging against this 
propensity.  The Rapid Execution Engine was the inclusion of two arithmetic logic units 
operating at double the speed of the processor, which was necessary to handle the 
doubled data pipe.  The Execution Trace Cache was a new kind of cache that could hold 
decoded instructions until they are ready for execution.  The chip has less level-1 cache, 
8K, to decrease latency.l 
 
One of the ways Intel and other manufacturers have increased the speed and performance 
of CPUs was to decrease die size.  This decreases the voltage needed to run the processor 
and increases clock speed.  The functional part of a processor is actually a tiny chip with 
less than a third of a square inch of area within the external package shown in the 
preceding paragraphs.  The chips are thinner than a dime and contain tens-of-millions of 
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electronic circuits and switches.  The chips are constructed from semiconductor 
materials, such as gallium arsenide or most commonly silicon, which require certain 
conditions to conduct electricity.  In the case of silicon, it is grown into a large crystal 
and sliced by precision saws into sheets, called wafers, which can hold many individual 
chips.  Layers of various materials treated with a photosensitive material are built up on 
the surface of the wafer to form the foundation of the transistors and data pathways.  A 
process called photolithography is used to process these wafers by copying the circuitry 
onto the layered materials on the wafer using a separate mask for each layer.  Light is 
accurately focused through the masks, transferring the masks image onto the wafer, 

which causes a chemical reaction on the photosensitive material, fixing the circuitry.  
Another chemical is used to wash away the excess material.  Sometime after the 
photolithography process is complete, the wafer is cut into small rectangular chips.  The 
chips are installed into the CPU package by soldering the appropriate contacts on the chip 
with other circuitry and the pins that create the interface with the computer’s 
motherboard.li 
 
 

FIND MATERIAL ON ANALYTIC COMPLEXITY THEORY—1972 

 
 
In 1975, Bill Gates and Paul Allen developed BASIC—the first microcomputer 
programming language.  In 1977, Microsoft, Gates and Allen’s newly founded company, 
released Altair BASIC for use on the Altair 8800.  In 1980, Microsoft acquired the 
nonexclusive rights to an operating system, called 86-DOS, that was developed by a 
Seattle Computer Products' Tim Patterson.  Microsoft had paid $100,000 to contract the 
rights from SCP to sell 86-DOS to an unnamed client.  In 1980, IBM chose Microsoft 
product PC-DOS as the operating system for their new personal computer line. 
 

The IBM PC became a mainstream corporate item when it 
was released in 1981.  Microsoft bought all rights to 86-DOS 
in 1981, renaming it as MS-DOS.  IBM’s 5150 had a 4.77 
MHz Intel 8088 CPU with 64K of RAM and 40K of ROM.  
It had a 5.25-inch, single-sided floppy drive, PC-DOS 1.0 
installed and sold for $3000.  IBM’s new PC had an open 
architecture, which used off-the-shelf components.  This was 
good for rapid and industry standard development but bad 
(for IBM) because other companies could obtain these 
components and build their own machines.  In 1982, 
Columbia Data Products released the first IBM PC 

compatible “clone”, called the MPC and Microsoft released an IBM compatible version 
operating system—MS-DOS v1.25, which could support 360K double-sided floppy 
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disks.  The same year, Compaq introduces 
their first PC.  The popularity of the PC 
caused sales to soar to 3,275,000 units in 
1982, which was greater than ten times as 
many in 1981.  The social impact of 
computers was so important that Time 
Magazine named the PC as its “Man of the 
Year” to be published on the cover of the 
January 1983 edition as the “Machine of the 
Year”.  By 1990, more that 54 million 
computers will be in use in the U.S.  By 1996, 
approximately 66 percent of employees and 
33 percent of homes have access to personal 
computers. 
 
The initial MS-DOS offerings did not support 
hard disks.  Version 2.0 in 1983 supported up 
to 10 MB hard disks and tree – structured file 
systems.  Version 3.0 in 1984 supported 1.2 
MB and hard disks larger than 10 MB and 3.1 

had Microsoft network support.  Version 4.0 in 1988 had graphical user interface support, 
a shell menu interface and support for hard disks larger than 32 MB.  Version 5.0 in 1991 
had a full-screen editor, undelete and unformat utilities, and task swapping.  Version 6.0 
in 1993 had DoubleSpace disk compression utility and sold over a million copies in 40 
days. Version 7.0 of MS-DOS was included with Windows 95 in 1995.lii 
 

In 1985, 
Microsoft 
introduced 
Windows 
1.0(top left) 
with the promise 
of an easy-to-
use graphical 
user interface, 
device 
independent 
graphics and 
multitasking 
support.  A 

limited set of available applications lead to modest sales.  Windows 2.0 (bottom left) was 
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released in 1987 with two types available.  
One was for the 16-bit Intel 80286 
microprocessor, called Windows/286.  It 
added icons and overlapping windows with 
independently running applications.  The other 
was for Intel’s 32-bit line of 80386 
microprocessors, which had all the 
functionality of the Windows/286 system but 
also had the ability to run multiple DOS 
applications, simultaneously.  Windows 2.0 
had much better sales due to the availability of 

software applications, including Excel, Word, 
Corel Draw!, Ami, Aldus PageMaker and 
Micrografx Designer.  In 1990, Microsoft 
released Windows 3.0 (left) with a completely 
new interface and the ability to address 
memory beyond 640K without secondary 
memory manager utilities.  Many independent 
software developers produced software 
applications for this environment, boosting 
sales to over 10,000,000 copies. 
 
In 1994, Microsoft released Windows NT 3.1 
with an entirely new operating system kernel.  
This system was intended for high-end uses, 
such as network servers, workstations and 
software development machines.  Windows 
NT 4.0 was released later the same year and 
was an object-oriented operating system.  In 
1995, Microsoft introduced Windows 95 
(left), which was a full 32-bit operating 
system.  It had preemptive multitasking, 
multithreaded, integrated network, advanced 
file system.  Though it included DOS 7.0, the 
Windows 95 OS assumed full control of the 
system after booting.  In 1998, Windows 98 

was released with enhanced Web support (the Internet Explorer browser was integrated 
with the OS), FAT32 for very large hard disk support, and multiple display support to use 
up to 8 video cards and monitors.  It also had hardware support for DVD, Firewire, 
universal serial bus (USB) and accelerated graphics port (AGP).  In 2000, Windows 2000 
(formerly NT 5.0) was released and included many of the features of Windows 98, 
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including integrated Web support, and enhanced support for distributed file system.  It 
also supported Internet, intranet and extranet platforms, active directory, virtual private 
networks, file and directory encryption, and installation of the W2K OS from a server 
located on the LAN. 
 

1976, Cray Research developed the Cray-1 (left) 
supercomputer with vectorial architecture, which 
was installed at the Los Alamos National 
Laboratory.  The $8.8 million machine could 
perform 160 FLOPS (world record at the time) 
and had an 8-megabyte (1 million words) main 
memory.  The machines hardware contained no 
wires longer than four feet and had a “unique C-
shape”, which allowed integrated circuits to be 
very close together.  In 1982, Steve Chen’s and 
his research group built the Cray X-MP (right) by 
making architectural changes to the Cray-1, 
which contained two Cray-1 compatible 
pipelined processors and a shared memory 
(essentially two Cray-1 machines were linked 
together in parallel using a shared memory).  
This was the first use of shared-memory 
multiprocessing in vector supercomputing.  The 
initial computational speedup of the two-
processor X-MP over the Cray-1 was 300%—

three times the computational speed by only 
doubling the number of processors.  It was 
capable of 500 megaflops.  This machine 
became world’s most commercially successful 
parallel vector supercomputers.  Chen 
commented that the X in X-MP stood for 
“extraordinary”.  The X-MP ran on UNICOS, 
which was Cray’s first UNIX-like operating 
system.  In 1985, the Cray-2 reached one 
billion FLOPS and had the world’s largest 
memory at 2048 megabytes.  In 1988, Cray 
produced the Y-MP, which was first 
supercomputer to “sustain” over one billion 
FLOPS on many of its applications.  It had 
multiple 333 million FLOPS processors that 
could achieve 2.3 billion FLOPS.liii 
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In 1977, DEC introduced the 32-bit 
VAX11/780 computer (left), which was 
used primarily for scientific and technical 
applications.  The first machine was 
installed at Carnegie Mellon University 
with other units installed at CERN in 
Switzerland and the Max Planck Institute 
in Germany.  It could perform 1,000,000 
instructions per second and was the first 
commercially available 32-bit machine.liv 

 
 In 1981, Motorola introduced one of the first 
32-bit instruction microprocessor offerings from 
their 68000 line of processors.  The chip has 32-
bit registers and a flat 32-bit address space, 
which could access a specific memory location, 
instead of blocks of memory like the 8086.  It 
had a 16-bit ALU but had a 32-bit address adder 
for address arithmetic.  It had eight general-
purpose registers and eight address registers.  It 
used the last address register as a stack pointer 
and had a separate status register.  It was 
initially designed as an embedded processor for 
household products but found its way into 
Amiga and Atari home computers and arcade 

computer games as a controller.  It was also used in Apple Macintosh, Sun Microsystems 
and Silicon Graphics machines.  The architecture of this chip was very similar to PDP-11 
and VAX machines, which made it very compatible with programs written in the c 
language.  The chip has been used by auto manufacturers as controllers as well as in 
medical hardware and computer printers because of its low cost.  Updated models of the 
processor are still used today in personal digital assistants (PDAs) and Texas Instruments 
TI-89, TI-92 and Voyage 2000 calculators.  In 1988, Motorola introduced the 88000 
series processors, which were RISC-based, had a true Harvard architecture (separate 
instruction and data busses) and could perform 17 MIPS.lv 
 
In 1985, Inmos introduced the transistor computer (transputer) with its concurrent parallel 
microprocessing architecture.  Single transputer chips would have all the necessary 
circuitry to work by themselves or could be wired together to form more powerful 
devices from simple controllers to complex computers.  Chips of varying power and 
complexity were available to serve a wide array of tasks.  A low power chip might be 
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configured to be a hard disk controller and a few higher-powered chips might act as 
CPUs.  These were the first general purpose chips to be specifically designed for parallel 
computing. 
 
It was realized in the early 1980’s that conventional CPUs would reach a performance 
limit.  Even though advances in technology had miniaturized processor circuitry, packing 
millions of transistors on chips smaller than the size of a fingernail and had drastically 
increased computational speed, there was still a impenetrable barrier to conventional 
processor performance—the speed of light.  Light in a vacuum travels at approximately 
299,792,458 meters per second or approximately one foot in a nanosecond.  This is the 
upper limit for the speed that electrons can travel within electrical equipment, which 
suggests that the clock speed limit for processors is about 10 GHz.  We are almost half 
way to this limit and we realize that the speed of light is a limiting factor in the design of 
CPUs.  The best way to ensure progress in computational performance is parallel 
processing.lvi 
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Parallel Processing 
 
 

What is parallel processing? 

 
Parallel processing is the concurrent execution of the same activity or task on multiple 
processors.  The task is divided or specially prepared so that the work can be spread 
among many processors and yield the same result as if done on one processor but in less 
time.  There is a variety of parallel processing systems.  A parallel processing system can 
be a single machine with many processors or many machines connected by a network.  
The most powerful machines in the world are machines with hundreds or thousands of 
processors and hundreds of gigabytes of memory.  These machines are called massively 
parallel processors (MPP).  Many individual machines can cooperate to perform the same 
task in distributed networks.  The combination of lower performance computers may 
exceed the power of a single high-performance computer, when the computational 
resources are comparable.  The computational power of MPPs has been combined using 
the distributed system model to produce unprecedented performance. 
 
Flynn’s taxonomy classifies computing systems with respect to the two types of streams 
that flow into and out of a processor: instructions and data.  These two types of streams 
can be conceptually split into two different streams, even if delivered on the same wire.  
The classifications, based on the number of streams of each type, are: 
 
Single instruction stream/single data stream (SISD) systems have a single instruction 
processing unit and a single data processing unit.  These are conventional single 
processor computers, also known as sequential computers scalar processors. 
 
Single instruction stream/multiple data streams (SIMD) systems have a single instruction 
processing unit or controller and multiple data processing units.  The instruction unit 
fetches and executes instructions until a data or arithmetic operation is reached.  It then 
sends this instruction to all of the data processing units, which each perform the same 
task on different pieces of data, until all data is processed.  These data processing units 
are either idle or all performing the same task as all other data processors.  They cannot 
perform different tasks, simultaneously.  Each of the data processors has a dedicated 
memory storage area.  They are directed by the instruction processor to store and retrieve 
data to and from memory.  The advantage of this system is the decrease in the amount of 
logic on the data processors.  Approximately 20 to 50 percent of a single processor’s 
logic is dedicated to control operations.  The rest of the logic is shared by register, cache, 
arithmetic and data operations.  The data processors have little or no control logic, which 
allows them to perform arithmetic and data operations much more rapidly.  A vector or 
array processing machine is an example of an SIMD machine that distributes data across 
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all memories (possibly stores each cell of an array or each column of a matrix in a 
different memory area).  These machines are designed to execute arithmetic and data 
operations on a large number of data elements very quickly.  A vector machine can 
perform operations in constant time if the length of the vectors (arrays) does not exceed 
the number of data processors.  Most supercomputers, used for scientific computing in 
the 1980’s and 1990’s, are based on this architecture. 
 
Multiple instruction streams/single data stream (MISD) systems have multiple instruction 
processors and a single data processor.  Few of these machines have been produced and 
have had no commercial success. 
 
Multiple instruction streams/multiple data streams (MIMD) systems have multiple 
instruction processors and multiple data processors.  There are a diverse variety of MIMD 
systems including those constructed from inexpensive off-the-shelf components to much 
more expensive interconnected vector processors, and many other configurations.  
Computers over a network that simultaneously cooperate to complete a single task are 
MIMD systems.  Computers that have two or more independent processors are another 
example.  A multiple independent processor machine has the ability to perform more than 
one task, simultaneously.lvii 
 
There are three types of performance gains received from parallel processing solutions 
for the use of n processors: 
 

• Sub-linear speedup is when the increase in speed is less than 
o i.e. five processors yields only 3x speedup 

• Linear speedup is when the increase is equal to n 
o i.e. five processors yields 5x speedup 

• Super-linear speedup is when the increase is greater than n 
o i.e. five processors yields 7x speedup 

 
Generally linear or faster speedup is very hard to achieve because of the sequential nature 
of most algorithms.  Parallel algorithms must be designed to take advantage of parallel 
hardware.  Parallel systems may have one shared memory area, to which all processors 
may have access.  In shared memory systems care must be taken to design parallel 
algorithms that ensure mutual exclusion, which protects data from being corrupted when 
operated on by more than one processor.  The results from parallel operations should be 
determinate, meaning they should be the same as if done by a sequential algorithm.  As 
an example, if two processors write to the same variable in memory such that: 
 

• Processor 1 reads: x 

• Processor 2 reads: x 
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• Processor 1 writes: x = x + 1 

• Processor 2 writes: x = x – 1 
 
Depending on the possible orderings of the reads and writes the resulting variable could 
be x–1, x+1 or x.  This is a race condition and is an extremely undesirable because the 
result depends on chance.  Synchronization primitives, such as semaphores and monitors, 
aid in the resolution of conflicts due to race conditions.  The shared memory may be in a 
single machine if it has more than one processor or a distributed shared memory, where 
individual computers access the same memory area(s) located on another computer(s) on 
the network. 
 
Parallel processors must use some means to communicate.  This is done on the system 
buss and with shared memory in the case of a single computer with multiple processors.  
When multiple machines are involved, communication can be implemented over a 
network using either message passing or a distributed shared memory. 
 
Cost is a very important consideration in distributed computing.  A parallel system with n 
processors is cheaper to build than a processor that is n-times faster.  For tasks that need 
to be completed quickly and can be performed by more than one thread of execution with 
minimal concurrency, parallel processing is an exceptional solution.  Many high-
performance or supercomputing machines have parallel processing architectures.  The 
parallel implementations discussed in the remainder of this book will be based on 
distributed computing as opposed to single machines with multiple processors. 
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Existing Tools for Parallel Processing 
 
 
The parallel programming systems discussed, PVM, MPI and Linda, are implemented 
with libraries of function calls that are coded directly into either C or Fortran source code 
and compiled.  There are two primary types of communication used: message passing 
(PVM and MPI) and tuple space (Linda and Synergy).  In message passing a participating 
process may send messages to any other process, directly, which is somewhat similar to 
inter-process communication (IPC) in the Linux/UNIX operating system.  In fact, both 
message passing and tuple space systems are implemented with sockets in the 
Linux/UNIX environment.  A tuple space is a type of distributed shared memory that is 
used by participating processes to hold messages.  These messages can be posted or 
obtained by any of the participants.  All of these programs function by the use of 
“master” and “worker” designations.  The master is generally responsible to break the 
task into pieces and to assemble the results.  The workers are responsible to complete 
their piece of the task.  These systems are communicate over computer networks and 
typically have some type of middleware to facilitate cooperation between machines, such 
as the cluster discussed below. 
 
 

Computer Clusters 

 
Computer clusters, sometimes referred to as server farms, are groups of connected 
computers that form a parallel computer by working together to complete tasks.  Clusters 
were originally developed in the 1980’s by Digital Equipment Corporation (DEC) to 
facilitate parallel computing and file and peripheral device sharing.  An example of a 
cluster would be a Linux network with some middleware software to implement the 
parallelism.  Well established cluster systems have procedures to eliminate single point 
failures, providing some level of fault tolerance.  The four major types of clusters are: 
 

• Director based clusters—one machine directs or controls the behavior of the 
cluster and usually implemented to enhance performance 

• Two-node clusters—two nodes perform the same part of the task or one serves as 
a backup in case the other fails to ensure fault tolerance 

• Multi-node clusters—may have tens of clustered machines, which are usually on 
the same network 

• Massively parallel clusters—may have hundreds or thousands of machines on 
many networks 

 
Currently, the fastest supercomputing cluster is Earth Simulator at 35.86 TFlops, which is 
15 TFlops faster than the second place machine.  The main reason for cluster based 
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supercomputing, after performance, is cost efficiency.  The third fastest supercomputing 
cluster is the 17.6 TFlop System X at Virginia Tech.  It consists of 1100 dual processor 
Apple Power Macintosh G5s running Mac OS X.  It cost a mere $5.2 million, which is 10 
percent of the cost of much slower mainframe supercomputers. 
 
 

The Parallel Virtual Machine (PVM) 

 
The Parallel Virtual Machine (PVM), a software tool to implement a system of 
networked parallel computers, was originally developed by Oak Ridge National 
Laboratory (ORNL) in 1989 by Vaidy Sunderam and Al Geist.  Version 1 was a 
prototype that was only used internally for research  .PVM was later rewritten by 
University of Tennessee and released as Version 2 in 1991, which was used primarily for 
scientific applications.  PVM Version 3, completed in 1993, supported fault tolerance and 
provided better portability.  This system supports C, C++ and Fortran programming 
languages. 
 
PVM allows a heterogeneous network of machines to function as a single distributed 
parallel processor.  This system uses message-passing model as a means to implement the 
sharing of tasks between machines.  Programmers use PVM’s message passing to take 
advantage of the computational power of possibly many computers of various types in a 
distributed system, making them appear to be one virtual machine.  PVM’s API has a 
collection of functions to facilitate parallel programming by message passing.  To spawn 
workers, the pvm_spawn() function is called: 
 
int status = pvm_spawn(char* task, char** argv, int flag, char* where, int 
ntask, int* tid); 

 
where status is an integer that holds the number of tasks successfully spawned, task is the 
name of the executable to start, argv is the arguments for the task program, flag is an 
integer that specifies PVM options, where is the identifier of a host or system in which to 
start a process, ntask is an integer holding the number of task processes to start, and tid is 
an array to hold the task process ID’s.  To end another task process, use the pvm_kill() 
function: 
 
int status = pvm_kill(int tid) 

 
where status contains information about the operation, and tid is the task process number 
to kill.  To end the calling task, use the pvm_exit() function: 
 
int status = pvm_exit(); 
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where status contains information about the operation.  To obtain the task process ID of 
the calling function, use the pvm_mytid() function: 
 
int myid = pvm_mytid(); 

 
where myid is an integer holding the calling function’s task process ID.  To obtain the 
task process ID of the calling function’s parent, use the pvm_mytid() function: 
 
int pid = pvm_parent(); 

 
where pid is an integer holding the parent function’s task process ID.  To send a message, 
the buffer must be initialized by calling the pvm_initsend() function: 
 
int bufid = pvm_initsend(int encoding); 

 
where bufid is the buffers ID number, and encoding is the method used to pack the 
message.  To pack a string message into the buffer, use the pvm_pkstr() function: 
 
int status = pvm_pkstr(char* msg); 

 
where status contains information about the operation, and msg is a null terminated 
string.  This function basically packs the array msg into the buffer.  There are other 
functions to pack arrays of other data into the buffer.  For a complete listing, see the 
PVM User’s Guide listed in the references.  To send a message use the pvm_send() 
function: 
 
int status = pvm_send(int tid, int msgtag); 

 
where status contains information about the operation, tid is the task process number of 
the recipient, and msgtag is the message identifier.  To receive a message, use the 
pvm_recv() function: 
 
int bufid = pvm_recv(int tid, int msgtag); 

 
where bufid is the buffers ID number, tid is the task process number of the sender, and 
msgtag is the message identifier.  This is a blocking receive.  Entering “-1” as the tid 
value is a wildcard receive and will accept messages from all task processes.  To unpack 
a buffer, use the pvm_upkstr() function: 
 
int status = pvm_upkstr(char* msg); 

 
where status contains information about the operation, and msg is a string in which to 
store the message.  To compile and run a PVM application type: 



Synergy User Manual and Tutorial 

69 

 
[c615111@owin ~/pvm ]>aimk master slave 
[c615111@owin ~/pvm ]>master 

 
The amik command compiles the application and the executable name of the master 
executable runs the application.  An example of a PVM “Hello worker—Hello master” 
application is below.  It demonstrates the structure of a basic PVM program.  The master 
program is: 
 
// master.c: “Hello worker” program 
#include <pvm3.h> 
#define NUM_WKRS 3 
 
main(){ 
 
  int status;        // Status of operation 
  int tid[NUM_WKRS];// Array of task ID’s all must be unique in system 
  int  msgtag;      // Message tag to ID a message 
  int flag = 0;     // Used to specify options for pvm_spawn 
  char buf[100];    // Message string buffer 
  char wkr_arg0 = 0;// Null argument to activate workers 
  char** wkr_args;  // Array of args to activate workers 
  char host[128];   // Host machine name 
 
  // Set wkr_args to start worker program to address of wkr_arg0 
  // which has been set to 0 (NULL) 
  wkr_args = &wkr_arg0; 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Get my task ID and print ID and host name to screen 
  printf("Master: ID is %x, name is %s\n", pvm_mytid(), host); 
 
  // Spawn a program executable named “worker” 
  // Will return the number of workers spawned on success or 0 on error 
  // The empty string (fourth arg) requests any machine 
  // Putting a name in this arg would request a specific machine 
  status = pvm_spawn("worker", wkr_args, flag, "", NUM_WKRS, tid); 
 
  // If spawn was successful it will return NUM_WKRS 
  // since there are NUM_WKRS workers 
  if(status == NUM_WKRS){ 
 
    // Label first message as 1 
    msgtag = 1; 
 
    // Put message in buffer 
    sprintf(buf, "Hello worker from %s", host); 
 
    // Initialize the send message operation 
    pvm_initsend(PvmDataDefault); 
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    // Transfer the message to PVM storage 
    pvm_pkstr(buf); 
 
    // Send the message signal to all workers 
    for(i=0; i< NUM_WKRS; i++) 
      pvm_send(tid[i], msgtag); 
 
    // Print messages sent to workers 
    printf(“Master: Messages sent to %d workers\n”) 
 
    // Get replies from workers 
    for(i=0; i< NUM_WKRS; i++){ 
 
      // Execute a blocking receive to wait for reply from any (-1) worker 
      pvm_recv(-1, msgtag); 
 
      // Put the received message in the buffer 
      pvm_upkstr(buf); 
 
      // Print the message 
      printf("Master: From %x: %s\n", tid, buf); 
 
    } 
 
    // Print end message 
    printf(“Master: Application is finished\n”); 
 
  } 
 
  // Else the spawn was not successful 
  else 
    printf("Cannot start worker program\n"); 
 
  // Exit application 
  pvm_exit(); 
} 

 
The master program spawns a number of workers, sends the “Hello worker…” message 
and waits for a reply.  After the reply is received, it is printed to screen and the master 
terminates.  The worker program is: 
 
// worker.c: “Hello Master” program 
#include <pvm3.h> 
 
main(){ 
 
  int ptid;       // Parents task ID 
  int msgtag;     // Message tag to ID a message 
  char buf[100];  // Message string buffer 
  char host[128]; // Host machine name 
  FILE* fd;       // File in which to write master’s message 
 
// Open file to store message 
fd = fopen(“msg.txt”, "a"); 
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  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Get parents task ID 
  ptid = pvm_parent(); 
 
  // Label first message as 1 
  msgtag = 1; 
 
  // Execute a blocking receive to wait for message from master 
  pvm_recv(ptid, msgtag); 
 
  // Put the received message in the buffer 
  pvm_upkstr(buf); 
 
  // Print the message to file 
  fprintf(fd, "Worker: From %x: %s\n", ptid, buf); 
 
  // Put reply message in buffer 
  sprintf(buf, "Hello master from %s", host); 
 
  // Initialize the send message operation 
  pvm_initsend(PvmDataDefault); 
 
  // Transfer the message to PVM storage 
  pvm_pkstr(buf); 
 
  // Send the message signal to master 
  pvm_send(ptid, msgtag); 
 
  // Close file 
  fclose(fd); 
 
  // Exit application 
  pvm_exit(); 
} 

 
The worker waits for the initial message from the master, writes the message to a file, 
sends a reply and terminates.  The output on the master machine would resemble: 
 
[c615111@owin ~/pvm ]>master 
Master: ID is 0, name is owin 
Master: Messages sent to 3 workers 
Master: From 3: Hello master from saber 
Master: From 1: Hello master from sarlac 
Master: From 2: Hello master from owin 
Master: Application is finished 

 
All the workers output can be redirected to the master’s terminal by running the 
application in PVM’s console, which can be started by typing: 
 
[c615111@owin ~/pvm ]>pvm 
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pvm>spawn -> master 

 
Typing “pvm” at the command prompt activates the console and typing “spawn -> 
master” at the console prompt executes the application in console mode.  The “->” causes 
all worker screen output to be printed on the masters terminal.  At any point or time in a 
parallel application any executing PVM task (worker) may: 
 

• Create or terminate other tasks 

• Add or remove computers from the parallel virtual machine 

• Have any of its process communicate with any other task’s processes 

• Have any of its process synchronize with any other task’s processes 
 
By proper use of PVM constructs and host language control-flow statements, any specific 
dependency and control structure may be employed under the PVM system.  Because of 
its easy to use programming interface and its implementation of the virtual machine 
concept, PVM became popular in the high-performance scientific computing community.  
Currently it is not being developed but it made a significant contribution to modern 
distributed processing designs and implementations.lviii 
 
 

Message Passing Interface (MPI/MPICH) 

 
The Message Passing Interface (MPI) is a communications protocol that was introduced 
in 1994.  It is the product of a community effort to define the semantics and syntax for a 
core set of message passing libraries for use by a wide variety of users and that could be 
used on a wide variety of MPP systems.  MPI is not a standalone parallel system for 
distributed computing because it does not include facilities to manage processes, 
configure virtual machines or support input/output operations.  It has become a standard 
for communication among machines running parallel programs on distributed memory 
systems.  MPI is primarily a library of routines that can be invoked from programs 
written in the C, C++ or Fortran languages.  Its differential advantages over older 
protocols are portability and performance.  Its more portable because MPI has an 
implementation for almost every distributed system and faster because it is optimized for 
the specific hardware on which it is run.  MPICH is the most commonly used 
implementation of MPI. 
 
The MPI API has hundreds of function calls to perform various operations within a 
parallel program.  Many of these function calls are similar to IPC calls in the UNIX 
operating system.  Some of the basic MPI functions will be briefly explained and used in 
an example program.  Before any MPI operations can be used in a program the MPI 
interface must be initialized with the MPI_Init() function: 
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MPI_Init(&argc, &argv); 

 
where argc is the number of arguments and argv is a vector of strings, both of which 
should be taken as command line arguments because the same program will be used for 
both the master and worker processes in the example application.  After initialization, a 
program must determine its rank by calling MPI_Comm_rank(), designated by process 
number, to determine if it is the master or a worker process.  The master will be process 
number 0.  The function call is: 
 

MPI_Comm_rank(MPI_Comm comm, int* rank); 

 
where comm is a communicator and is defined in MPI’s libraries and rank is a reference 
pointer to an integer to hold this process’ rank.  It may also be necessary for an 
application to determine the number of currently running processes.  The 
MPI_Comm_size() function returns this number.  The function call is: 
 

MPI_Comm_size(MPI_Comm comm, int* size); 

 
where comm is a communicator and is defined in MPI’s libraries and size is a reference 
pointer to an integer to hold the number processes.  To send a message to another process 
the MPI_Send() function is used as such: 
 
MPI_Send(void* msg, strlen(msg)+1, MPI_Datatype type, int dest, int tag, 
MPI_Comm comm); 

 
where msg is a message buffer, strlen(msg)+1 sets the length of the message and its null 
terminal, type is the data type of the message as defined by MPI’s libraries, dest is an 
integer holding the process number of the destination, tag is an integer holding the 
message tag, and comm is a communicator and is defined in MPI’s libraries.  This is a 
blocking send and will wait for the destination to receive the message before executing 
further instructions.  To receive a message the MPI_Recv() function is used as such: 
 
MPI_Recv(void* msg, int size, MPI_Datatype type, int source, int tag, MPI_Comm 
comm, MPI_Status* status) 

 
where msg is a message buffer,  is an integer holding the size actual size of the receiving 
buffer, type is the data type of the message as defined by MPI’s libraries, source is an 
integer holding the process number of the source, tag is an integer holding the message 
tag, comm is a communicator and is defined in MPI’s libraries, and status is the data 
about the receive operation.  To end an MPI application session the MPI_Finalize() 
function is called: 
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MPI_Finalize(); 

 
which disables the MPI interface.  To compile and run an MPI application type: 
 
[c615111@owin ~/mpi ]>mpicc -o hello hello.c 
[c615111@owin ~/mpi ]>mpirun –np 4 hello 

 
The mpirun command activates a MPI application named “hello” with 4 processes (1 
master and 3 workers) and the mpicc command is actually not a proprietary compiler.  It 
is a definition that is equivalent a call to the cc compiler with the following arguments to 
access the proper libraries: 
 
[c615111@owin ~/mpi ]>cc -o hello hello.c -I/usr/local/mpi/include\ 
-L/usr/local/mpi/lib -lmpi 

 
An example of an MPI application is: 
 
// hello.c program 
#include <stdio.h> 
#include “mpi.h” 
 
main(int argc, char** argv){ 
 
  int my_rank;         // Rank of process 
  int p;               // Number of processes 
  int source;          // Rank of sender in loops 
  int dest;            // Rank of receiver 
  int tag = 50;        // Tag for messages 
  char buf[100];       // Storage buffer for the message 
  MPI_Status status;   // Return status for receive 
  FILE* fd;            // File in which to write master’s message 
 
// Open file to store message 
fd = fopen(“msg.txt”, "a"); 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Initialize MPI application session 
  // No MPI functions may be used until this is called 
  // This function may only be called once 
  MPI_Init(&argc, &argv); 
 
  // Get my rank 
  // Master’s rank will be ‘0’ 
  // Worker’s ranks will be greater than ‘0’ 
  MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); 
 
  // Get the number of running processes 
  MPI_Comm_size(MPI_COMM_WORLD, &p); 
 
  // If my_rank != 0, I am a worker 
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  if (my_rank != 0){ 
 
    // Set source to ‘0’ for master 
    source = 0; 
 
    // Receive message from master i 
    MPI_Recv(buf, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status); 
 
    // Print the message to file 
    fprintf(fd, "Worker: %s\n", buf); 
 
    // Put reply in buffer 
    sprintf(buf, “Hello master from %s number %d”, buf, my_rank); 
 
    // Set destination to ‘0’ for master 
    dest = 0; 
 
    // Send the reply to master 
    // Use strlen(buf)+1 to include '\0' 
    MPI_Send(buf, strlen(buf)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 
 
  } 
 
  // Else my_rank == 0 and I am the master 
  else{ 
 
  // Get my task ID and print ID and host name to screen 
  printf("Master: ID rank %d, name is %s\n", my_rank, host); 
 
    // Put reply in buffer 
    sprintf(buf, “Hello worker from %s number %d”, buf, my_rank); 
 
    // Send messages to all workers 
    for (dest=1; dest<p; dest++){ 
 
      // Send messages to workers 
      MPI_Send(buf, strlen(buf)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 
 
      // Print message to screen 
      printf(“Master: Sent: %s to %d\n”, buf dest); 
 
    } 
 
    // Get replies from all workers 
    for (source=1; source<p; source++){ 
 
      // Receive reply from worker i 
      MPI_Recv(buf, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status); 
 
      // Print message to screen 
      printf(“Master: Received: %s\n”, buf); 
 
    } 
 
  } 
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  // Close file 
  fclose(fd); 
 
    // Print end message 
    printf(“Master: Application is finished\n”); 
 
  // End MPI application session 
  // No MPI functions may be called after this function is called 
  MPI—Finalize(); 
} 

 
The screen output on the master machine would resemble: 
 
Master: ID rank 0, name is owin 
Master: Sent: Hello worker from owin number 0 to 1 
Master: Sent: Hello worker from owin number 0 to 2 
Master: Sent: Hello worker from owin number 0 to 3 
Master: Received: Hello master from saber number 3 
Master: Received: Hello master from owin number 1 
Master: Received: Hello master from sarlac number 2 
Master: Application is finished 

 
 

Linda 

 
Linda is an environment and coordination language for parallel processing that was 
initially developed as a research project and a commercial product at Yale University by 
David Gelernter and Nicolas Carriero.  Linda’s design is based on a compromise between 
message passing and shared memory within a distributed parallel processing system.  
This system introduced the concept of a tuple space, which is a distributed shared 
memory area in which machines can communicate by reading, taking or putting tuples. 
 
A single tuple space is created when the master program is executed.  Tuples are similar 
to a vector data type but do not have specified primitive or structured data types 
contained within them.  This allows any data to be stored in a binary format within the 
tuple space.  Any combination of mixed data types can be placed not only into a tuple 
space but also in individual tuples within the space.  Linda tuples may have a maximum 
of 16 fields, which are separated by commas.  Entries in the tuple space are identified by 
names or numerical values in the tuple’s data rather than as an address in local machines.  
An example of a tuple space entry with 3 fields is: 
 

(“string”, 123, 45.678); 

 
which contains a character string, an integer and a floating point number, respectively.  
There are two kinds of tuples in Linda: active tuples, also called live or process tuples, 
are tuples that are under active evaluation, and passive tuples, also called data tuples, are 
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entries in the tuple space similar to the example above.  Active tuples are created with the 
eval() function.  The function call: 
 

eval(“worker”, worker()); 

 
would create a tuple entry with “worker” in the first field and spawn a new process that 
will immediately call the worker() function.  Passive tuples are created and added to the 
tuple space with the Linda’s out() function.  The function call: 
 

out(“string”, 123, 45.678); 

 
would create the tuple and add it to the tuple space. 
 
Data can be either read or removed from the tuple space.  A template is used to retrieve a 
tuple from the tuple space by matching a pattern in the fields of a tuple’s fields.  The 
following conditions must be met to match a template to a tuple: 
 

1. The template and tuple both must have the same number of fields. 
2. The template and tuple both must have the same types, values, and length of all 

literal values in corresponding fields. 
3. The template and tuple both must have matching types and lengths of all formals 

in the corresponding fields. 
 
A read operation, using the rd() function, leaves the tuple for other processes to access.  
The function call: 
 

rd(“string”, 123, ? A); 

 
reads a three entry tuple that has “string” as its first element and 123 as its second.  The 
data in the third element is placed in the A variable.  The in() function gets and removes 
an entry from the tuple space.  The function call: 
 

in(“string”, 123, ? A); 

 
gets a three entry tuple that has “string” as its first element and 123 as its second.  The 
data in the third element is placed in the A variable and the entry is removed from the 
tuple space. 
 
Programming for a tuple space is similar to programming for shared memory because all 
participating processes share it.  However it is also similar to message passing because 
entries are posted and taken from it.  The major benefit of this system is that participants 
can enter and leave the system without formerly announcing an arrival or departure.  
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They can also take messages, data or tasks from the tuple space at their own pace, which 
can balance the workload, giving more work to machines capable of greater performance, 
and decrease the overall duration of a given task.  Tuple spaces and load balancing will 
be discussed further in later sections. 
 
It should also be noted that Linda tuple spaces do not observe a first in first out (FIFO) 
structure.  Reading or retrieving an entry may not necessarily obtain the oldest entry, 
which may cause programming errors if this structure is assumed.  Linda parallel 
programs are written with both the master and worker programs in the same source file.  
The master function is the main function and the worker is a named function.  Linda has 
its own built in compiler to compile the executable.  To compile and execute a distributed 
network application type: 
 
[c615111@owin ~/linda ]>clc -o hello hello.cl 
[c615111@owin ~/linda ]>ntsnet hello 

 
The clc command activates Linda’s compiler and the ntsnet command executes the hello 
program as a network application.  An example of a Linda master or main function for 
the “Hello worker—Hello Master” application is: 
 
// hello.cl program 
#define NUM_WKRS 3 
 
real_main(int argc, char* argv){ 
 
  int i;          // Loop counter 
  int hello();    // Function declaration 
  char buf[100];  // Message string buffer 
  char host[128]; // Host machine name 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Print master’s name 
  printf("Master: Name is %s\n", host); 
 
    // Put message in buffer 
    sprintf(buf, "Hello workers from %s", host); 
 
  // Put the message in the tuple space 
  out("message", buf); 
 
  // Start the workers 
  for (i=0; i< NUM_WKRS; i++) 
 
    // Start an active tuple (a worker process) 
    eval("worker", worker(i)); 
 
  // Get all workers’ reply from tuple space 
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  for (i=0; i< NUM_WKRS; i++){ 
 
    // Get reply and remove from tuple space 
    in("reply", ? buf); 
 
    // Print reply to screen 
    printf(“Master: %s\n”, buf); 
 
  } 
 
  // Print end message to screen 
  printf("Master: Application is finished\n"); 
 
  // End the master 
  return(0); 
} 

 
An example of a worker function is: 
 
// The worker function 
worker(int i){ 
 
  char buf[100];  // Message string buffer 
  char host[128]; // Host machine name 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Read the message from tuple space 
  rd(“message”, ? buf); 
 
  // Print the message to screen 
  printf("Worker: %s number %d got %s\n", host, i, buf); 
 
    // Put message in buffer 
    sprintf(buf, "Hello master from %s number %d", host, i); 
 
  // Put reply in tuple space 
  out("reply", buf); 
 
  // Print end message to screen 
  printf("Worker: %s finished\n"); 
 
  // End the worker 
  return(0); 
 
} 

 
Linda prints both the master and workers’ output to the master’s screen.  The screen 
output on the master machine would resemble: 
 
[c615111@owin ~/fpc01 ]>ntsnet hello 
Master: Name is owin 
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Worker: saber number 1 got Hello workers from owin 
Worker: owin number 0 got Hello workers from owin 
Worker: owin finished 
Worker: sarlac number 2 got Hello workers from owin 
Master: Hello master from sarlac number 2 
Worker: saber finished 
Worker: sarlac finished 
Master: Hello master from saber number 1 
Master: Hello master from owin number 0 
Master: Application is finished 

 
It should also be noted that global variables in Linda applications are not transferred to 
workers.  Using global variables will have unpredictable results.lix 
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Parallel Programming Concepts 
 
 

Stateless Parallel Processing (SPP) 
 
The Stateless Parallel Processing architecture is comprised of “fully configured 
computers” connected by a “multiple redundant switching network” that form a 
“unidirectional virtual ring network”, as shown below.  Multiple direct paths are provided 
from each node to every other node.  Redundancy allows for scalable performance and 
fault tolerance. 
 

Multiple
Redundant
Switching
Network

Fully
Configured
Computers

Unidirectional
Virtual Ring
Network

 
 

The Stateless Parallel Processing Architecture 

 
Please note that the unidirectional “virtual” network is implemented through the multiple 
redundant switching network’s hardware and is not an actual physical ring.  Each 
computer might have only one network interface adapter card.  Each node on the virtual 
ring is aware of every other node because each maintains a current list of all participating 
nodes.  Each node can also detect and isolate faulty nodes.  The SPP virtual ring’s 
responsibility is limited to tuple queries and SPP backbone management.  Tuple data is 
transmitted directly from point to point.  This ring also provides full bandwidth support 
for multicast communication through the network, where all nodes can access multicast 
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messages.  The diagram below shows a conceptual representation of a unidirectional 
virtual ring, where the arrows may represent possibly a single multicast message that all 
nodes can acquire.  The multiple switch network can transport a massive amount of data 
between machines. 
 

 

P1 

P2 

P3 

P4 

P5 

P8 

P7 

P6 

 
 

The Unidirectional Virtual Ring Configuration 

 
The tuple space model allows participating processes to acquire massages from a current 
tuple space without temporal restrictions.  Processes can take messages when they are 
ready without causing a work stoppage, unlike communication methods that uses a 
blocking send.  In this design, tuples flow freely through the network from process to 
process.  Each process will perform a part of the task by taking work date tuples from the 
tuple space at its own pace.  The processes are purely data driven and will activate or 
continue processing only when it receives required data.  There are no explicit global 
state controls in this “stateless” system, which ensures fault tolerance.  If a process fails 
the system can recover because the data can be renewed in the tuple space and taken by 
another worker process. 
 
SPP applications use a parallel processing model called “scatter and gather”, involving 
master and worker processes.  A master process is the application controller for the 
worker processes.  In a single task, single pass application, it divides the task into n 
subtasks, places the work data tuples in a tuple space, collects the completed subtasks 
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from a tuple space, and directs the workers to terminate when all of the results are 
received.  The three diagrams below show possible contents during an applications 
execution. 

 
 
 
 
 
 
 
 
The 

left-most diagram shows a problem tuple space, where work data is stored, after 
messages to workers and work data tuples have received.  The center shows a result tuple 
space, where the master will receive completed subtasks.  The right-most diagram shows 
a problem tuple space with a termination tuple, also called a poison pill, which instructs 
the workers to terminate.  Notice that the message tuples remain in the tuple space and 
that the data tuples are removed.  This is because the messages were accessed by a read 
operation and the data tuples were accessed by a take operation.  If the terminal message 
is accessed by a take operation, it must be replaced so that the next worker can access it.  
This scenario assumes a parallel system that can create multiple tuple spaces, such a 
synergy.  If the system is limited to one, then it depends more heavily on name pattern 
matching of tuples. 
 
The master program with its accompanying tuple spaces can reside on any participating 
node.  The worker processes take work tuples from the tuple space that match a tuple 
query, put the results into the result tuple space, until all work is completed, and 
terminate when they get the terminate message tuple from the master.  The diagram 
below shows a possible master-worker configuration.  It should be noted that the master 
machine generally has both a master process and a worker process.  Otherwise a valuable 
system resource would be wasted because the master machine would be idle between 
receiving results. 
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The SPP Architectural Support 

 

 

Stateless Machine (SLM) 

 
 
A stateless machine (SLM) is a fully implemented stateless parallel processing system.  
An SLM should provide an API that offers a robust but easy to use interface with the 
system’s functionality.  It should have a fault tolerance facility to recover from dropped 
hosts and lost data.  The network structure should offer high efficiency and high 
performance.  The locations of processes should be transparent for all participating 
processes in the application, meaning that the system should handle communication 
between machines and not be directly noticeable to running programs.  The workload 
should be balanced between the participating processes, where each process is kept busy 
until all work is complete. 
 
 

Linda Tuple Spaces Revisited 
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As previously mentioned, the tuple space was first defined in the Linda distributed 
parallel programming implementation as a method of multi-machine inter-process 
coordination.  It’s easiest to think of a Linda tuple space as a buffer, a virtual bag or a 
public repository that cooperating processes from different computers can put tuples in, 
or read and get tuples from.  It’s a type of distributed shared memory, where any process 
can access any tuple, regardless of its storage location.  A tuple space is not a physical 
shared memory.  It is a logical shared memory because processes have to access it 
through an intermediary or tuple handling process.  The API only makes the tuple space 
appear to be physically shared memory.  The computers, though physically dispersed, 
must be part of some distributed system.  The machines can communicate with each other 
without really being aware that any of the other machines exist, other than the data passed 
through the tuple space.  Heterogeneous data types can be stored in tuples and differently 
structured tuples can be placed in the tuple space.  Hence, all of the following data types: 
 

char name[4] = {“Bob”}; 
int number = 12; 
double fraction = 34.56; 

 
can be placed in the same tuple: 
 

(name, number, fraction) 
 
and all of the following tuples: 
 

(name, number, fraction) 
(102, 73, 36, 125, 67.5, 1000) 
(“Sally”, “123 Broad St”, “Philadelphia PA 19024”, “555-123-4567”) 

 
can be placed in the same tuple space. 
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Owin Saber Sarlac Luke

("Bob", 12, 34.56)

(102, 73, 36, 125, 67.5, 1000)

("Sally", "123 Broad St",

"Philadelphia PA 19024",

"555-123-4567")

Tuple Space

 
 
Tuples are placed in and retrieved from tuple spaces by function calls, previously 
described, that match a pattern from a template.  A template is essentially a tuple that is 
used to express a pattern.  The template: 
 

(? A, 12, ? B) 
 
where A is a string and B is a double, matches: 
 

(name, number, fraction) = (“Bob”, 12, 34.56) 
 
However, this template will not match the other tuples in the example above.  The 
general rules for a Linda tuple were stated previously.  This is called an associative 
memory because elements or tuples in the memory are accessed by associating them, 
synonymously, with a pattern in their content as opposed to being referenced by a 
memory address or physical location. 
 
Active tuples in Linda are based on the generative communication model, where 
dynamically spawned processes are turned into data upon completion of their task.  The 
eval(“worker”, worker()) function will leave a tuple in the tuple space with two fields 
from the called worker function: 
 

worker(){ 
  // perform task 
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  return 0; 
} 

 
will place a tuple with the name assigned from the process that spawned the worker 
function in the first field (in this case “worker”) and the return value of the worker 
function.  All tuples placed by the worker into the tuple space will be accessible by all 
other processes even after the worker terminates.  The tuple from the example above after 
the eval() function returns would be: 
 

(“worker”, 0) 
 
Since the concept was pioneered at Yale, many languages have been implemented using 
variants of Linda’s tuple space model, including LiPS, ActorSpaces, TSpace, 
PageSpaces, OpenSpaces, Jini/Javaspaces, Synergy, etc. 
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Theory and Challenges of Parallel Programs and Performance 

Evaluation 
 
 

Basic Logic 

 
Logic is the study of the reasoning of arguments and is both a branch of mathematics and 
a branch of philosophy.  In the mathematical sense, it is the study of mathematical 
properties and relations, such as soundness and completeness of arguments.  In the 
philosophical sense, logic is the study of the correctness of arguments.  A logic is 
comprised of an informal language coupled with model-theoretic semantics and/or a 
deductive system.  The language allows the arguments to be stated, which is similar to 
the way we state our thoughts in written or spoken languages.  The semantics provide a 
definition of possible truth-conditions for arguments and the deductive system provides 
inferences that are correct for the given language. 
 
This section introduces formal logics that can be used as methods to design program logic 
and prove that the logic is sound.  Systems based on propositional logic have been 
produced to facilitate the design and proofs for sequential programs.  However, these 
systems were inadequate for concurrent applications.  Variations of temporal logic, which 
is based on modal logic, are used to evaluate the logic of concurrent programs. 
 
 

Propositional Logic 

 
Symbolic logic is divided into several parts of which propositional calculus is the most 
fundamental.  A proposition, or statement, is any declarative sentence, which is either 
true or false. We refer to true (T) or false (F) as the truth-value of the statement. 
 
“1 + 1 = 2” is a true statement. 
“1 + 1 = 11” is a false statement. 
“Tomorrow will be a sunny day” is a proposition whose truth is yet to be determined. 
“The number 1” is not a proposition because it is not a sentence. 

 
Simple statements are those that represent a single idea or subject and contain no other 
statements within.  Simple statements will be represented by the symbols: p, q, r and s.  If 
p stands for the proposition: “ice is cold”, we denote it as: 
 
p: “ice is cold”, 

 
which is read as: 
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p is the statement “ice is cold”. 

 
The following is an example of a simple statement assertion and negation. 
 
p assertion  p is true if p is true or p is false if p is false. 
¬p negation  ¬p is false if p is true or ¬p is true if p is false. 

 
Then for the true statement: p: “ice is cold”, ¬p is the statement that “ice is not cold”, 
which is false. 
 
A compound statement is made up of two or more simple statements.  The simple 
statements are known as components of the compound statement.  These components 
may be made up of smaller components.  Operators, or connectives, separate 

components.  The sentential connectives are disjunction (∨, pronounce as OR), 

conjunction (∧, pronounce as AND), implication (→, pronounce as IF) and equivalence 

(↔, pronounce as IF AND ONLY IF).  These are called sentential because they join 
statements, or sentences, into compound sentences.  They are binary operators because 
they operate on two components or statements.  Equivalence statements (p↔q) are also 

called biconditionals, and implication statements (p→q) are also called conditionals.  In 

the p → q conditional statement, the "if- clause" or first statement, p, is called the 
antecedent and the "then-clause" or second statement, q, is called the consequent.  The 
antecedent and consequent could be compounds in more complicated conditionals rather 
than the simple statements shown above.  These terms are used for all the binary 
operators listed above.  Negation (¬) is called a unary operator because it only operates 
on one component or statement.  The following define the conditions under which 
components joined with connectives are true; otherwise they are false: 
 

p∨q disjunction either p is true, or q is true, or both are true 

p∧q conjunction both p and q are true 

p→q implication if p is true, then q is true 

p↔q equivalence p and q are either both true or both false 

 
The statements: 
 
p: “ice is cold” 
q: 1 + 1 = 2 
r: “water is dry” 
s: 1 + 1 = 11 
 
under conjunction: 
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p∧q is true because “ice is cold” is true and “1 + 1 = 2” is true 
p∧r is false because “ice is cold” is true and “1 + 1 = 11” is false 
s∧q is false because “1 + 1 = 11” is false and “1 + 1 = 2” is true  
r∧s is false because “water is dry” is false and “1 + 1 = 11” is false 
 
All meaningful statements will have a truth-value.  The truth-value of a statement 
designates the statement as true T or false F.  The statement p is either absolutely true or 
absolutely false.  If a compound statement’s truth-value can be determined in its entirety 
based solely on its components, the compound statement is said to be truth-functional.  If 
a connective constructs compounds that are all truth-functional, the connective is said to 
be truth-functional.  Using these conditions it is possible to build truth-functional 
compounds from other truth-functional compounds and connectives.  As an example: if 
the truth-values of p and of q are known, then we could deduce the truth-value of the 
compound using the disjunction connective, p∨q. This establishes that the compound, 
p∨q, is a truth-functional compound and disjunction is a truth-functional connective.  A 
truth table contains all possible truth-values for a given statement.  The truth table for p 
is: 
 

p 

T 

F 

 
because the simple statement p is either absolutely true or absolutely false.  The 
following is the truth table of p and q for the five previously mentioned operators: 
 

p q ¬p ¬q p∨q p∧q p→q p↔q 

T T F F T T T T 

T F F T T F F F 

F T T F T F T F 

F F T T F F T T 

 
Parentheses ( ) are used to group components into whole statements.  The whole 

compound statement p∧q can be negated by grouping it with parentheses and negating 

the group ¬(p∧q).  The table below shows all negated truth-values for the operators 
previous table. 
 

p q ¬(¬p) ¬(¬q) ¬(p∨q) ¬(p∧q) ¬(p→q) ¬(p↔q) 

T T T T F F F F 

T F T F F T T T 

F T F T F T F T 

F F F F T T F F 
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To avoid an excessive number of parentheses in statements, there is a standard for 
operator precedence.  This simply means the order in which operations are performed.  
Negation has precedence over conjunction and conjunction has precedence over 
disjunction.  The statement: 
 

¬p∨q is (¬p)∨q not ¬(p∨q) 
 
and 
 

¬p∨q∧r is ((¬p) ∧q)∨r 
 
A truth table will have 2n rows, where n is the number of distinct simple statements in the 
whole statement.  The first truth table for p had only two rows and the previous two had 
four rows.  If p, q and r were under consideration, there would be eight rows.  To find 

which values for p, q, and r will evaluate to true for P(p, q, r) = ¬(p∨q)∧(r∨p), construct a 
truth table for the statement.  Start by placing true values in the top row and false values 
in the next from the bottom row for one instance of each unique simple statement as 
shown below.  The last row is to maintain the steps performed by operator precedence 
and parentheses.  Mark all simple statements step 1. 
 

¬ (p ∨ q) ∧ (r ∨ p) 

 T  T  T   

        

        

        

        

        

        

 F  F  F   

 1  1  1  1 

 
Then assume all F’s are 0’s and all T’s are 1’s, and count up the table from 0 to 7 in 
binary.  Then copy values to all other duplicate simple statements. 
 

¬ (p ∨ q) ∧ (r ∨ p) 

 T  T  T  T 

 T  T  F  T 

 T  F  T  T 

 T  F  F  T 

 F  T  T  F 

 F  T  F  F 

 F  F  T  F 

 F  F  F  F 
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 1  1  1  1 

 
This holds all combinations of F’s and T’s relative to the three simple statements.  
Remember the pattern in the columns and you wont have to count next time.  Next mark 
the second set columns to be evaluated by precedence and fill in the truth-values.  
Because of the parentheses, the next columns will be the third and seventh. 
 

¬ (p ∨ q) ∧ (r ∨ p) 

 T T T  T T T 

 T T T  F T T 

 T T F  T T T 

 T T F  F T T 

 F T T  T T F 

 F T T  F F F 

 F F F  T T F 

 F F F  F F F 

 1 2 1  1 2 1 

 
Negation has precedence over conjunction.  Hence the first column is the negation of the 
third.  To find the truth-values for conjunction, consider the highest values in the last row 
on each side, which is column one on the left and column seven on the right. 
 

¬ (p ∨ q) ∧ (r ∨ p) 

F T T T F T T T 

F T T T F F T T 

F T T F F T T T 

F T T F F F T T 

F F T T F T T F 

F F T T F F F F 

T F F F T T T F 

T F F F F F F F 

3 1 2 1 4 1 2 1 

 
The statement is only true for P(p, q, r) = P(F, F, T). 
 
Again if p, q and r were under consideration, values for p, q, and r will evaluate to true 

for Q(p, q, r) = (p→q)∧[(r↔p)∨(¬p)], construct a truth table for the statement.  Also note 
that brackets [ ] and braces { } can be used to differentiate compound groupings up to 
three levels. 
 

(p → q) ∧ [(r ↔ p) ∨ (¬ p)] 

T T T T T T T T F T 

T T T F F F T F F T 

T F F F T T T T F T 
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T F F F F F T F F T 

F T T T T F F T T F 

F T T T F T F T T F 

F T F T T F F T T F 

F T F T F T F T T F 

1 2 1 4 1 2 1 3 2 1 

 
There are three types of propositional statements that can be deduced from all truth-
functional statements: 
 

• If the truth-value column for the table has a mixture of T’s and F’s, the table’s 
statement is called a contingency. 

• If the truth-value column contains all T’s, the statement is called a tautology.   

• Lastly, if the truth-value column contains all F’s, the statement is called a 
contradiction. 

 
The following logical equivalences apply to any combination of statements used to create 
larger compound statements.  The p's, q's and r' s can be atomic statements or compound 
statements. 
 

The Double Negative Law    ¬(¬p) ≡ p 
The Commutative Law for conjunction  p∧q ≡ q∧p 
The Commutative Law for disjunction  p∨q ≡ q∨p 
The Associative Law for conjunction   (p∧q)∧r ≡ p∧(q∧r) 
The Associative Law for disjunction   (p∨q)∨r ≡ p∨(q∨r) 
DeMorgan's Law for conjunction   ¬(p∨q) ≡ (¬p)∧(¬q) 
DeMorgan's Law for disjunction   ¬(p∧q) ≡ (¬p)∨(¬q) 
The Distributive Law for conjunction  p∧(q∨r) ≡ (p∧q)∨(p∧r) 
The Distributive Law for disjunction  p∨(q∧r) ≡ (p∨q)∧(p∨r) 
Absorption Law for conjunction   p∧p ≡ p 
Absorption Law for disjunction   p∨p ≡ p 
Conditional using negation and disjunction  p→q ≡ (~p)∨q 
Equivalence using conditionals and conjunction p↔ ≡ (p→q)∧(q→p) 

 
 

Predicate Calculus 

 
Another part of symbolic logic is predicate calculus, which is built from propositional 
calculus.  Predicate calculus allows logical arguments based on some or all variables 
under consideration.  Consider the following arguments, which cannot be expressed in 
propositional logic: 
 
All dogs are mammals 
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Fido is a dog 
Therefore, Fido is a mammal 

 
The three statements: 
 
p: All dogs are mammals 
q: Fido is a dog 

r: Fido is a mammal 

 
are of the form: 
 
    p 
    q 

∴ r 

 
can be independently evaluated under propositional logic but cannot be evaluated to 

derive the conclusion “r: Fido is a mammal” because “therefore” (‘∴’) is not a legitimate 
propositional logic operator.  We need to expand propositional calculus and set theory to 
make use of the predicate calculus. 
 

We use the universal quantifier ∀, which means for all or for every, to establish a 
symbolic statement that includes all of the things in a set X that we are considering as 
such: 
 

∀x[Px→Qx] 

 
The brackets define the scope of the quantifier.  This example is read “For every variable 
x in set X, if Px then Qx”.  Applied to the example above, we could reword the statement 
“All dogs are mammals” by letting Px be: “if x is a mammal” and Qx be “then x is a 
mammal”.  We have: 
 
“For all x, if x is a dog, then x is a mammal”. 

 
This is called a statement form and will become a statement when x is given a value.  Let 
f = Fido.  A syllogism is a predicate calculus argument with two premises sharing a 
common term. 
 

    ∀x[Px→Qx] 
    Pf 

∴ Qf 
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The predicate P means “is a dog” and Q means “is a mammal”.  The conclusion states 
that because Fido is a dog, Fido is a mammal.  If we negate the quantifier as such: 
 

¬∀x[Px→Qx] 

 
The statement becomes: 
 
“Not every dog is a mammal”. 

 
Which sounds ridiculous but the statement is permissible by predicate logic.  We can 
change this to: 
 

∀x[Px→¬Qx] 

 
Which translates to: 
 
“Some dogs are not mammals”. 

 
Mathematical statements can be constructed using propositional calculus.  The statement: 
 
“If a integer is less than 10, then it is less than 11” 

 
This statement can be converted using the universal quantifier so that is true for every 

integer x (x ∈ N) less than 10 as such: 
 

∀x ∈ N [(x<10) → (x<11)]. 

 
Which translates to: 
 
“For every x that is an integer, if x is less than 10, then x is less then 11”. 

 
If a logical statement is to be constructed for one or more members of a set but not 

necessarily all, we can use the existential quantifier, ∃, which means “there exists” of “for 
some”.  The statement: 
 
“Some lawyers speak the truth”, 

 
would be restated as: 
 
“There exists a lawyer that speaks the truth”. 
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If we let Px be “x is a lawyer” and Qx be “x speaks the truth”, we have: 
 

∃x [Px ∧ Qx], 

 
which states that at least one lawyer speaks the truth.  Quantifiers can be applied to more 
then one variable in a statement. 
 
Let P be “is a shoe in my closet”, where x is a right shoe and y is a left shoe.  Then: 
 

∀x, ∃y[Px ∧ Py], 

 
is a symbolic representation of the statement: “For every right shoe in my closet, there 
exists a left shoe”.  A mathematical statement would be: 
 

∃z ∈ N [x = y×z], x ∈ N, y ∈ N, 

 
which states that there exists an integer z, such that integer x is divisible by integer y.lx 
 
 

Modal Logic 

 
Modal logic extends the capabilities of traditional logic to include modal expressions, 
which contain premises such as “it is necessary that…” or “it is possible that…”.  Modal 
logic is the study of deductive behavior of expressions based on necessary and/or 
possible premises.  Modal logic can also be defined as a family of related logical systems 
that include logics for belief and temporal related expressions.  The table below contains 
some common symbols and definitions used in the modal logic family: 
 
Logic   Symbols  Expressions Symbolized 

Modal Logic    It is necessary that … 

   ◊  It is possible that … 
Deontic Logic  O  It is obligatory that … 
   P  It is permitted that … 
   F  It is forbidden that … 
Temporal Logic 
    G  It will always be the case that … 
    F  It will be the case that … 
    H  It has always been the case that … 
    P  It was the case that… 
 Doxastic Logic 

   Bx  x believes that … 
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A popular weak modal logic K, conceived by Saul Kripke, .defines three operators: 

“negation” (¬), “if…then…” (→), and “it is necessary that…” ().  The other 
connectives, “and” (∧), “or” (∨), and “if and only if” (↔), can be defined by ¬ and → as 

in propositional logic. The operator “possibly” (◊) can be defined by ◊A = ¬¬A.  In 
addition to the standard rules in propositional logic, K has the following rules: 
 

Necessitation Rule: If A is a theorem of K, then so is A.  

Distribution Axiom: (A → B) → (A → B). 

 
The necessitation rule states that all theorems are necessary and the distribution axiom 
states that “if it is necessary that if A then B, then if necessarily A then necessarily B”.  A 
and B range over all possible formulas for the language. 
 

(M) A → A 

 
 
 

(4) A → A  

(5) ◊A → ◊A 

 
 
 

(S4): … =  and ◊◊…◊ = ◊ 
(S5): 00… =  and 00…◊ = ◊, where each 0 is either  or ◊ 

 
 
 

(B) A → ◊A 

 
 
 
Axiom Name  Axiom  Condition on Frames  R is... 

(D)   A → ◊A ∃u wRu    Serial  

(M)   A → A  wRw    Reflexive  

(4)   A → A (wRv ∧ vRu) → wRu  Transitive  

(B)   A → ◊A wRv → vRw   Symmetric  

(5)   ◊A → ◊A (wRv ∧ wRu) → vRu  Euclidean 

(CD)   ◊A → A (wRv ∧ wRu) → v = u  Unique  

(M)   (A → A) wRv → vRv   Shift Reflexive 

(C4)   A → A wRv → ∃u(wRu∧uRv)  Dense  

(C)   ◊A → ◊A wRv∧wRx → ∃u(vRu ∧ xRu) Convergent 
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lxi 
 

Temporal Logic 

 
 
 
P "It has at some time been the case that …"  
F "It will at some time be the case that …"  
H "It has always been the case that …"  

G "It will always be the case that …"  

 
 
 
Pp ≡ ¬H¬p  

Fp ≡ ¬G¬p  

 
 
 
Gp→Fp   "What will always be, will be"  
G(p→q)→(Gp→Gq) "If p will always imply q, then if p will always be the case, so will q"  
Fp→FFp  "If it will be the case that p, it will be — in between — that it will be"  

¬Fp→F¬Fp  "If it will never be that p then it will be that it will never be that p"  

 
 
 
p→HFp   "What is, has always been going to be"  
p→GPp   "What is, will always have been"  
H(p→q)→(Hp→Hq) "Whatever always follows from what always has been, always has been"  

G(p→q)→(Gp→Gq) "Whatever always follows from what always will be, always will be"  

 
 
 
RH: From a proof of p, derive a proof of Hp  

RG: From a proof of p, derive a proof of Gp 

 
 
 

F∃xp(x)→∃xFp(x) ("If there will be something that is p, then there is now something that will be 

p") 
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Spq "q has been true since a time when p was true" 
Upq "q will be true until a time when p is true" 

 
 
 

Pp ≡ Sp(p∨¬p)  
Fp ≡ Up(p∨¬p)  

 
 
 

Pp ≡ ∃n(n<0 & Fnp)  

Fp ≡ ∃n(n>0 & Fnp)  

Hp ≡ ∀n(n<0→Fnp)  

Gp ≡ ∀n(n>0→Fnp)  

 
 
 
Op ≡ Up(p&¬p) 

 
 
 

Fp ≡ Op ∨ OFp 

 
 
 
Pp is true at t if and only if p is true at some time t′ such that t′<t  
Fp is true at t if and only if p is true at some time t′ such that t<t′  

 
 
 
Hp is true at t if and only if p is true at all times t′ such that t′<t  
Gp is true at t if and only if p is true at all times t′ such that t<t′  

 
 
 
p is true at all times under all interpretations over any frame in F.  

For any frame not in F, there is an interpretation which makes p false at some time. 

 
 
 

Hp→Pp  ∀t∃t′(t′<t)    (unbounded in the past) 
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Gp→Fp  ∀t∃t′(t<t′)    (unbounded in the future) 
Fp→FFp ∀t,t′(t<t′ → ∃t″(t<t″<t′))   (dense ordering) 

FFp→Fp ∀t,t′(∃t″(t<t″<t′) → t<t′)   (transitive ordering) 

FPp → PppFp ∀t,t′,t″((t<t″ & t′<t″) → (t<t′  t=t′  t′<t)) (linear in the past) 

PFp → PppFp ∀t,t′,t″((t″<t & t″<t′) → (t<t′  t=t′  t′<t)) (linear in the future) 

 
 
 
Kill(Brutus,Caesar,44BC) 

 
 
 

Pp ∃t(t<now & p(t)) 

Fp ∃t(now<t & p(t)) 

Gp ∀t(t<now → p(t)) 

Hp ∀t(now<t → p(t)) 

 
 
 
Holds(Asleep(Mary),(1pm,6pm)) 
Occurs(Walk-to(John,Station),(1pm,1.15pm)) 

 
 
 

∀s,i,i′(Holds(s,i) & In(i′,i) → Holds(s,i′)) 

∀e,i,i′(Occurs(e,i) & In(i′,i) → ¬Occurs(e,i′)) 

 
 
 
John saw Mary in London on Tuesday. 
Therefore, John saw Mary on Tuesday.  

 
 
 

∃e(See(John,Mary,e) & Place(e,London) & Time(e,Tuesday)), 

Therefore, ∃e(See(John,Mary,e) & Time(e,Tuesday)). 

 
[lxii] 
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Petri Net 

 
 
 
 

Amdahl’s Law 

 
Gene Amdahl, a computer architect, entrepreneur, former IBM employee and one of the 
creators of the IBM System 360 architecture, devised this method in 1967 to determine 
the maximum expected improvement to a system when only part of it has been improved.  
He presented this as an argument against parallel processing.  This law is similar to the 
law of diminished returns, which states that as more input is applied, each additional 
input unit will produce less additional output.  Amdahl’s law states that a number of 
functions or operations must be executed sequentially, decreasing a computer’s speed 
when more processors are added.  In other words, the number of tasks that must be 
completed sequentially limits computational speedup.  This causes a bottleneck in the 
workflow, slowing the overall task.  However as the size of a task increases the effect of 
Amdahl’s law decreases.  The speedup of a system is: 
 

timprovemenwithouteperformanc

timprovemenwitheperformanc
speedup

timeimproved

timeunimproved

__

__

_

_
==  

 
If you make an improvement that greatly increases performance (maybe 100 times or 
more) in part of a computation but the overall improvement is only 25 percent, then the 
upper limit for speedup S is: 
 

333.1
25.000.1

00.1

_

_
=

−
==

timeimproved

timeunimproved
S  

 
Note: The unimproved execution time is 1.00 = 100% because this example makes use of 
the ratio between the two times, not the actual values.  Assume that an unimproved 
computation takes 4 seconds and the improved computation takes 3 seconds.  The 
equation is: 
 

333.1
sec3

sec4

_

_
===

timeimproved

timeunimproved
S  

 
If the improved computation is taken to be 100 percent performance, then by the 
relationship above the unimproved computation has 75 percent performance with respect 
to the improved. 
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333.1
75

100

__

__
===

timprovemenwithouteperformanc

timprovemenwitheperformanc
S  

 
If a computation is improved such that it affects a proportion Fp of the computation, then 
the improvement will have a speedup S affecting Fp.  The improved time for a 
computation will be equal to the unimproved time multiplied by the sum of the 

unaffected portion (1-Fp) and the speedup reduced affected portion (Fp÷S) of the task.  To 
find the improved execution time we use: 
 

( ) 







+−×=
S

F
Ftimeunimprovedtimeimproved

p

p1__  

 
Continuing the formula above with an affected portion of 40 percent and a speedup of 
2.66 times on this portion, we have: 
 

( ) ( ) 375.0415.06.04
66.2

4.0
4.014_ =×=××=




 +−×=timeimproved  

 
This method states, assuming that the value for the speed of the unimproved computation 
is 100 percent, the overall speedup for this computational improvement will be: 
 

S

F
F

timeimproved
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S

p
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Then plugging in the example proportional values: 
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75.0

1
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Using time values instead of proportions, we have: 
 

33.1
sec3

sec4

66.2

sec6.1
sec)6.1sec4(

sec4
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=S  
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Amdahl’s law for parallelization states that the sequential fraction Fs of a task that cannot 
be performed in parallel and the fraction Fp = (1-Fs) that can gives the following formula 
for maximum speedup by Np processors: 
 

p

s
s

N

F
F

S
−

+
=

1

1
 

 
As N approaches infinity, the maximal speedup approaches 1/Fs.  As the (1-Fs)/Np value 
becomes very small, the price paid for marginal performance increases.  Assume that Fs = 
0.06.  Then Fp = 1-Fs = 0.94.  For 4 processors: 
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The table below shows the run time, speedup, efficiency and cost for processors 
Np={1,2,4,…,1024}, where Fs = 0.06 and Fp = 0.94.  Notice that the speedup per 
additional processor is much less as Np increases, causing greater cost and less efficiency.  
The graphs show the effect on speedup (y-axis) with respect to Fs (x-axis) with increasing 
Np. 
 
Processors(Np) 1 2 4 8 16 32 64 128 256 512 1024 

Run Time 1024.00 542.72 302.08 181.76 121.60 91.52 76.48 68.96 65.20 63.32 62.38 

Speedup 1.0000 1.8868 3.3898 5.6338 8.4211 11.1888 13.3891 14.8492 15.7055 16.1718 16.4155 

Efficiency 100.00% 94.34% 84.75% 70.42% 52.63% 34.97% 20.92% 11.60% 6.13% 3.16% 1.60% 

Cost 1.00 1.06 1.18 1.42 1.90 2.86 4.78 8.62 16.30 31.66 62.38 
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The graphs have values Np of 4, 16, 64, 256 and 1024.  Notice that as the value Np 
increases, the area under the curve decreases, meaning that the non-parallizable part of 
the serial program has a greater effect and the degeneration occurs faster as Np increases. 
 
Amdahl’s intention was to show “the continued validity of the single processor approach 
and of the weaknesses of the multiple processor approach”.  His paper proposed 
arguments to support his proposal, such as: 
 

• “The nature of this overhead appears to be sequential so that it is unlikely to be 

amenable to parallel processing techniques.” 

• “A fairly obvious conclusion which can be drawn at this point is that the effort 

expended on achieving high parallel performance rates is wasted unless it is 

accompanied by achievements in sequential processing rates of very nearly the 

same magnitude.” 

 
 

Gustafson’s Law 

 
In 1988, John L. Gustafson proposed the notion that massively parallel processing was 
beneficial because Amdahl’s law implies that the parallel part of the computation and the 
number of processors is independent [lxiii].  He proposed a formula for a scaled speedup 
based on an observation that in most real world computations “the problem size scales 
with the number of processors”.  His proposed formula is: 
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where S is the speedup, the serial portion is Fs and Np is the number of processors.  
Again, assume that Fs = 0.06.  Then Fp = 1–F s = 0.94.  For 4 processors: 
 

82.318.0406.0)41(4)1( =−=×−+=×−+= spp FNNS  

 
The table and graphs below show the same data as in Amdahl but using Gustafson’s law. 
 
Processors(N) 1 2 4 8 16 32 64 128 256 512 1024 

Run Time 1024.0000 527.8351 268.0628 135.0923 67.8146 33.9748 17.0043 8.5064 4.2543 2.1274 1.0638 

Speedup 1.0000 1.9400 3.8200 7.5800 15.1000 30.1400 60.2200 120.3800 240.7000 481.3400 962.6200 

Efficiency 100.00% 97.00% 95.50% 94.75% 94.38% 94.19% 94.09% 94.05% 94.02% 94.01% 94.01% 

Cost 1.0000 1.0309 1.0471 1.0554 1.0596 1.0617 1.0628 1.0633 1.0636 1.0637 1.0638 

            

Consider the following diagrams, which are similar to those in Gustafson’s paper: 
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Under Gustafson’s proposal, increasing the number of processors has little affect on cost 
or efficiency and an almost linear speedup, as shown in the graphs above.  The problem 
with this method of evaluating computational speedup is that the serial and parallel 
programs perform different numbers of operations on the primary task because the task 
for the parallel implementation is Np times larger than that of the serial.  If the 
parallelized operation were matrix multiplication on n2 matrices for ns = 10, there would 
be 103 = 1000 multiplication and 1000 addition operations in the serial program.  If you 
scale up the problem for Np = 4 processors the multiplication operations must increase to 
4000 and the matrix np size must increase to: 
 

165874.110410004000 333 ≈×=×=  

 
Because matrix multiplication is O(n3) complexity, increasing the size of the matrix, even 
minimally, creates a much bigger job.  An observation by Yuan Shi was proposed in [lxiv], 
where an equivalence between Amdahl’s Law and Gustafson’s Law is explained.  The 
relationship is based on the adjustment to the serial fraction in Amdahl’s Law, call it FsA, 
and the unadjusted serial fraction used in Gustafson’s Law, call it FsG, such that: 
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As an example, consider a task that has serial fraction FsG = 0.05 with 1024 processors.  
Amdahl’s Law would predict speedup S to be: 
 

sG 

Single Processor 

Time = sG + pG = 1 

NppG 

sG 

Time = sG +Np pG 

N Processors pG 
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Gustafson’s Law predicts: 
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However when the serial fraction FsA is calculated from FsG using the equation above, we 
have: 
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We substitute FsA for FsG and solve: 
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For this situation, the claim of equivalent results with Gustafson’s Law by obtaining FsA 
from FsG, as defined above, and substituting FsA for FsG in Amdahl’s Law is true.  The 
table below shows that this is true for all number of processors, where Np = {1, 2, 4, 8, 
…, 1024} and FsG = 0.05. 
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Processors Np 
1 2 4 8 16 32 64 128 256 512 1024 

                        

FsG 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

FsA 0.05 0.025641 0.012987 0.0065359 0.0032787 0.001642 0.0008217 0.000411 0.0002055 0.0001028 5.14E-05 

                        

Amdahl-FsG 1 1.9047619 3.4782609 5.9259259 9.1428571 12.54902 15.421687 17.414966 18.618182 19.284369 19.635666 

Gustafson 1 1.95 3.85 7.65 15.25 30.45 60.85 121.65 243.25 486.45 972.85 

Amdahl-FsA 1 1.95 3.85 7.65 15.25 30.45 60.85 121.65 243.25 486.45 972.85 

 
The table below shows that this is also true for all FsG, where FsG = {0.01, 0.02, …, 0.90, 
0.1, 0.2} and Np = 1024. 
 

Processors Np 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 

                       

FsG 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 

FsG 9.864E-06 1.993E-05 3.02E-05 4.069E-05 5.14E-05 6.233E-05 7.35E-05 8.491E-05 9.657E-05 0.0001085 0.0002441 

                       

Amdahl-FsG 91.184328 47.716682 32.313033 24.427481 19.635666 16.415518 14.102741 12.361178 11.002471 9.9128751 4.9805447 

Gustafson 1013.77 1003.54 993.31 983.08 972.85 962.62 952.39 942.16 931.93 921.7 819.4 

Amdahl-FsA 1013.77 1003.54 993.31 983.08 972.85 962.62 952.39 942.16 931.93 921.7 819.4 

 
 

Performance Metrics 

 
Performance metrics are basically measures of computer and/or network system behavior 
over a given period of time.  The four primary types of performance metrics: 
 

• Latency 

• Throughput 

• Efficiency 

• Availability 

• Reliability 

• Utilization 
 
Latency is also called response time.  It is a measure of the delay between the initial time 
of a request for some service and the time that the service arrives, expressed in units of 
elapsed time.  The elapsed time between the completion of dialing a phone number and 
the first ring, the time that a router holds a packet, and the time spent waiting for a Web 
page to be displayed after a hyperlink is clicked are all latency metrics.  It can be stated 
as a statistical distribution.  An example is a server that must acknowledge 99.9% of 
client requests in one second or less. 
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Throughput, also called capacity, is the rate that results arrive or the amount of work 
done in a given time.  It is measured in the quantity of units per time.  Megabits per 
second of data transmitted across a network, transactions completed per minute in a 
transaction server, and gigabytes of data per second transferred across a system buss are 
all throughput metrics.  The theoretical maximum throughput is called bandwidth.  The 

bandwidth of a 400Mhz, 64-bit data bus is 25.6Gb/s (400Mhz × 64-bit) but the actual 
throughput is less because of padding between data blocks and control protocols. 
 
The ratio of usable throughput compared to the bandwidth is called efficiency.  The 
efficiency of a 400Mhz, 64-bit data bus, with a throughput of 20.48Gb/s, is 80% 

(20.48Gb/s ÷ 25.6Gb/s).  Goodput is the arrival rate of good data packets across a 
computer network.  If, on average, 920 packets arrive uncorrupted at the destination, the 
goodput is said to be 92%. 
 
Availability is the percentage of time that a system is available to provide service.  If a 
server is down for 15 minutes each day for maintenance, it has 98.96% availability 

(1425min ÷ 1440min). 
 
The reliability metric reports the mean time between failures (MTBF), which indicates 
the average period that the system is usable.  The mean time to repair (MTTR) is the 
average time to recover from failures. 
 
Utilization is the percentage of time that a component in the system is active.  Utilization 
is typically measured as a percentage.  The capacity or maximum throughput of a system 
is reached when the utilization of the busiest component is 100%.  Many systems have a 
utilization threshold because as utilization approaches 100%, system latency quickly 
increases. 
 
Performance metrics for parallel systems include the following: 
 

• Runtime 

• Speedup 

• Efficiency 

• Cost 

• Scalability 
 
The run time of a parallel system is elapsed time from the instance of execution of the 
master or controller program until the last program in the parallel system terminates.  Ts 
usually denotes the serial or single processor run time of a task is and Tp usually denotes 
the parallel run time. 
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Speedup, usually denoted by S, is the ratio calculated by dividing the serial run time of a 
particular task by the parallel run time for the same task: 
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As an example, if two size n matrices are to be multiplied, the operation has complexity 

Θ(n3).  Assuming that the run time for the operation a single processor is n3, the 
theoretical speedup, ignoring parallel system overhead, for 2 processors is: 
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Be careful not to make the following mistake for parallel time and speedup: 
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This assumes a change in the overall problem size, which is false because matrix 
multiplication is n3 multiplications and n3 additions, regardless of how many processors 
are used. 
 
Efficiency, usually denoted as E, is the ratio calculated by dividing the speedup S by the 
number of processors Np, which measures the percentage of time that a processor is 
working on the primary task.  For the matrix multiplication example the efficiency is: 
 

%1001
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====
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Parallel system overhead To can decrease system efficiency.  Parallel system overhead 
consists of all the necessary operations to manage and setup the parallel system, divide 
the task among the processors, transmit the task to the worker processes, collect the 
results from the processes and compile the results.  It may include pieces of the sequential 
program that cannot be parallelized T1-p.  Hence a more realistic formula for the run time 
with n processors Tn , where Tc is the time spent on computation of the task, is: 
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pocn TTTT −++= 1  

 
Assume that the following values are valid for the matrix multiplication above: 
 

• Sequential run time T1   120sec 

• Parallel computation time Tc   60sec 

• Parallel overhead To    20sec 

• Assume no non-parallizable code T1-p 0sec 
 
Then speedup would be 
 

%1505.1
sec80

sec120
sec,80sec0sec20sec60sec,60 121 ====++=++== − STTTTT poc  

 
This is somewhat less than the previous speedup. 
 
The cost C of a parallel system is calculated by multiplying the parallel run Tn time and 
the number of processors Np divided by the sequential run time T1: 
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The values in the example above, ignoring overhead, would be. 
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This equation is shows that the parallel system is optimal because the increase in speed is 
proportional with the number of processors added.  Typically costs are not optimal.  
Considering the overhead in the example above, we have: 
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Timing Models 
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Gathering System Performance Data 
 
Gathering Network Performance Data 
 
 

Optimal Load balancing 

 
Load balancing is the efficient distribution of the workload over all available processors, 
keeping all processors busy until the task is complete.  Not all machines will have the 
same computational capacity.  Some machines may have lower processor speeds or other 
tasks that consume system resources.  The idea is to shift more work to processors that 
can accommodate it.  Optimization is the modification of a system to improve 
performance and efficiency.  Optimal load balancing occurs when the latency of requests 
is minimized, computation is distributed equally across all processors, system throughput 
is maximized, and the system completes all tasks in the least possible time.  An 
absolutely optimal system is rare and can be difficult to produce.  Optimization usually 
involves compromise.  Performance or efficiency in one part of a system may have to be 
sacrificed to optimize another part. 
 
Successful optimization requires the development of sound algorithms and a functional 
prototype.  Challenges to load balancing include problems with timing, communication, 
synchronization, and iterative tasks and branching that may depend conditions elsewhere 
in the parallel system.  If tasks in a parallel system have differing execution times, one or 
more processors will have to wait for the longest executing task to finish.  
Communication and synchronization will occur over some communication channel, such 
as the system buss or a network.  Systems that require an abundance of communication 
may cause a bottleneck in these channels.  If the channel is shared between multiple 
processes, competition for the resource may cause contention in heavily loaded channels.  
Loops and branches can easily lead to non-deterministic program behavior if measures 
are not employed to prevent it. 
 
There are two classifications of load balancing: static and dynamic.  Static load balancing 
uses statistics, based on the ability of each processor’s ability to perform, to share the 
burden of the workload.  Dynamic load balancing shares work by dynamically averaging 
job size based on the performance of participating processors.  Dynamic load balancing 
requires more communication synchronization between processes, which consumes 
communication time.  However, the tradeoff is that dynamic load balancing can handle 
unexpected delays when jobs take unreasonable amounts of time, where static load 
balancing cannot.  If a task is taking longer than anticipated, some work can be sent to 
other processes.  The extra communication may decrease throughput but the processes 
will be kept busy.  It is also important to mention that load balancing should reduce the 
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overall run time for the system.  If it takes less time to complete the task without it, we 
should forgo load balancing.lxv 
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About Synergy 
 
 
Blue text: Copied and pasted from Getting Started by Dr. Shi 
Red text: Copied and pasted from syng_man.ps by Dr. Shi 
 

Introduction to The Synergy Project 
 
 

What is Synergy? 

 
Synergy is a parallel computing system using a Stateless Parallel Processing (SPP) 
principle.  It is a simplified prototype implementation of a Stateless Machine (SLM).  It 
lacks backbone fault tolerance and stateful process fault tolerance.  It is also known to 
have an inefficient tuple matching engine in comparison to the full implementation of 
SLM. 
 
SPP is based on coarse-grain dataflow processing.  A full SLM implementation will 
offer, in addition to all benefits that Synergy affords, a more efficient tuple matching 
engine and a non-stop computing platform with total fault tolerance for stateful processes 
and for the backbone.  An SLM can be considered a higher form of Symmetric 
MultiProcessor (SMP). 
 
Functionally, Synergy can be thought of as an equivalent to PVM, Linda or MPI/MPICH. 
 
Synergy uses passive objects for inter-process(or) communication.  It offers 
programming ease, load balancing and fault tolerance benefits.  The application-
programming interface (API) is a small set of operators defined on the supported object 
types, such as tuple space, file and database.  Synergy programs use a conventional open-
manipulate-close sequence for each passive object.  Each Synergy program is 
individually compiled using a conventional compiler and a Synergy Language Injection 
Library (LIL).  A parallel application is synthesized through a configuration specification 
(CSL) and an automatic processor-binding algorithm.  Synergy runtime system can 
execute multiple parallel applications on the same cluster at the same time. 
 
Synergy API blends well into the conventional sequential programs.  It is particularly 
helpful for reengineering legacy applications.  It even allows parallel processing of mixed 
PVM and MPI programs. 
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Synergy and SPP 

 
Synergy is a prototype implementation of a StateLess Machine (SLM). It uses a Passive 
Object-Flow Programming (POFP) method to offer programming ease, process fault 
Tolerance and high efficiency using cluster of networked computers. 
 
In principle, a Stateless Parallel Processing (SPP) system requires total location 
transparency for all processes (running programs). This affords three important non-
functional features: ease of programming, fault tolerance and load balancing.  
 
In programming, this means that location (host address and port) dependent IPC 
primitives are NOT allowed. Consequently, a special asynchronous IPC layer (of Passive 
Objects) is used for inter-process communication and synchronization. The SPP runtime 
system can automatically determine the optimal process-to-processor binding during the 
execution of a parallel application. This additional IPC layer does carry some overheads 
in comparison to direct IPC systems such as MPI/PVM. In return, it gives three critical 
benefits: programming ease, load balancing and fault tolerance support at the architecture 
level. 
 
 

Why Synergy? 

 
First, one hidden fact that has not been mentioned in any high performance 
multiprocessor's literature is that the use of multiple processors for a single application 
necessarily reduces its availability if any processor failure can halt the entire application.  
The current state of art in parallel processing is still under the shadow of this gloomy fact.  
SPP offers an approach that promises breakthroughs in both high performance and high 
availability using multi-processors.  Synergy is the first prototype designed to explore 
architectural flaws and to validate the claims of SPP. 
 
Second, technically, separation of functional programming from process coordination and 
resource management functions can ease parallel programming while maintaining high 
performance and availability.  Although many believe that explicit manipulation of 
processes and data objects can produce highly optimized parallel codes, we believe ease 
of programming, high performance and high availability are of a higher importance in 
making industrial strength parallel applications using multiprocessors. 
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Synergy Philosophy 

 
Facilitating the best use of computing and networking resources for each application is 
the key philosophy in Synergy.  We advocate competitive resource sharing as opposed to 
``cycle stealing.'' The tactic is to reduce processing time for each application.  Multiple 
running applications would fully exploit system resources.  The realization of the 
objectives, however, requires both quantitative analysis and highly efficient tools. 
 
It is inevitable that parallel programming and debugging will be more time consuming 
than single thread processing regardless how well the application programming interface 
(API) is designed.  The illusive parallel processing results taught us that we must have 
quantitatively convincing reasons to processing an application in parallel before 
committing to the potential expenses (programming, debugging and future maintenance.) 
 
We use Timing Models to evaluate the potential speedups of a parallel program using 
different processors and networking devices [13].  Timing models capture the orders of 
timing costs for computing, communication, disk I/O and synchronization requirements.  
We can quantitatively examine an application's speedup potential under various processor 
and networking assumptions.  The analysis results delineate the limit of hopes.  When 
applied to practice, timing models provide guidelines for processing grain selection and 
experiment design. 
 
Efficiency analysis showed that effective parallel processing should follow an 
incremental coarse-to-fine grain refinement method. Processors can be added only if 
there are unexplored parallelism, processors are available and the network is capable of 
carrying the anticipated load. Hard-wiring programs to processors will only be efficient 
for a few special applications with restricted input at the expense of programming 
difficulties. 
 
To improve performance, we took an application-oriented approach in the tool design.  
Unlike conventional compilers and operating systems projects, we build tools to 
customize a given processing environment for a given application. This customization 
defines a new infrastructure among the pertinent compilers, operating systems and the 
application for effective resource exploitation. Simultaneous execution of multiple 
parallel applications permits exploiting available resources for all users. This makes the 
networked processors a fairly real ``virtual supercomputer.''  
 
An important advantage of the Synergy compiler-operating system-application 
infrastructure is the higher level portability over existing systems. It allows written 
parallel programs to adapt into any programming, processor and networking technologies 
without compromising performance.  
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An important lesson we learned was that mixing parallel processing, resource 
management and functional programming tools in one language made tool automation 
and parallel programming unnecessarily difficult. This is especially true for parallel 
processors employing high performance uni-processors. 
 
Building timing models before parallel programming can determine the worthiness of the 
undertaking in the target multiprocessor environment and prevent costly design mistakes.  
The analysis can also provide guidelines for parallelism grain size selection and 
experiment design (http://joda.cis.temple.edu/~shi/super96/timing/timing.html) 
 
Except for server programs, all parallel processing applications can be represented by a 
coarse grain dataflow graph (CGDG).  In CGDG, each node is either a repetition node or 
a non-repetition node.  A repetition node contains either an iterative or recursive process.  
The edges represent data dependencies.  It should be fairly obvious that CGDG must be 
acyclic. 
 
CGDG fully exhibits potential effective (coarse grain) parallelism for a given application.  
For example, the SIMD parallelism is only possible for a repetition node.  The MIMD 
parallelism is possible for any 1-K branch in CGDG.  Pipelines exist along all 
sequentially dependent paths provided that there are repetitive input data feeds.  The 
actual processor assignment determines the deliverable parallelism. 
 
Any repetition node can be processed in a coarse grain SIMD (or scatter-and-gather) 
fashion.  The implementation of a repetition node is to have a master and a worker 
program connected via two tuple space objects.  The master is responsible for distributing 
the work tuples and collecting results.  The worker is responsible for computing the 
results from a given input and delivering the results. 
 

For all other components in the graph, one can use tuple space or pipe.  The use of 

file and database (yet to be implemented) objects is defined by the application. 

 
Following the above description results in a static IPC graph using passive objects.  The 
programmer's job is to compose parallel programs communicating with these objects. 
 
 

History 

 
Synergy V3.0 is an enhancement to Synergy V2.0 (released in early 1994).  Earlier 
versions of the same system appeared in the literature under the names of MT (1989), 
ZEUS (1986), Configurator (1982) and Synergy V1.0 (1992) respectively. 



Synergy User Manual and Tutorial 

118 

Major Components and Inner Workings of 

Synergy 
 
 
Technically, the Synergy system is an automatic client/server software generation system 
that can form an effective parallel processor for each application using multiple 
distributed Unix or Linux computers.  This parallel processor is specifically engineered to 
process programs inter-connected in an application dependent IPC (Inter-Program 
Communication/ Synchronization) graph using industry standard compilers, operating 
systems and communication protocols. This IPC graph exhibits application dependent 
coarse grain SIMD (Single Instruction Multiple Data), MIMD (Multiple Instruction 
Multiple Data) and pipeline parallelisms.  
 
Synergy V3.0 supports three passive data objects for program-to-program communication 
and synchronization:  
 

1. Tuple space (a FIFO ordered tuple data manager)  
2. Pipe (a generic location independent indirect message queue)  
3. File (a location transparent sequential file)  

 
A passive object is any structured data repository permitting no object creation functions. 
All commonly known large data objects, such as databases, knowledge bases, hashed 
files, and ISAM files, can be passive objects provided the object creating operators are 
absent.  Passive objects confine dynamic dataflows into a static IPC graph for any 
parallel application. This is the basis for automatic customization.  
 
POFP uses a simple open-manipulate-close sequence for each passive object. An one- 
dimensional Coarse-To-Fine (CTF) decomposition method (see Adaptable Parallel 
Application Development section for details) can produce designs of modular parallel 
programs using passive objects. A global view of the connected parallel programs reveals 
application dependent coarse grain SIMD, MIMD and pipeline potentials. Processing 
grain adjustments are done via the work distribution programs (usually called Masters). 
These adjustments can be made without changing codes. All parallel programs can be 
developed and compiled independently. 
 
 

What are in Synergy? (Synergy Kernel with Explanation) 

 
The first important ingredient in Synergy is the confinement of inter-program 
communication and synchronization (IPC) mechanisms.  They convert dynamic 
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application dataflows to a static, bipartite IPC graph.  In Synergy, this graph is used to 
automate process coordination and resource management.  In other words, Synergy V3.0 
uses this static IPC graph to automatically map parallel programs onto set of networked 
computers that forms a virtual multiprocessor.  In the full SLM implementation, this 
static IPC graph will be implemented via a self-healing backbone. 
 
Synergy v3.0 contains the following service components: 
 

• A language injection library (LIL).  This is the API programmers use to compose 
parallel programs.  It contains operators defined on supported passive objects, 
such as tuple space, file, pipe or database. 

• Two memory resident service daemons (PMD and CID).  These daemons resolve 
network references and are responsible for remote process/object execution and 
management. 

• Two dynamic object daemons (TSH and FAH).  These daemons are launched 
before every parallel application begins and are removed after the application 
terminates.  They implement the defined semantics of LIL operators. 

• A customized Distributed Application Controller (DAC).  This program actually 
synthesizes a multiprocessor application.  It conducts processor binding and 
records relevant information about all processes involved in the application until 
completion.  DAC represents a customized virtual multiprocessor for each 
application. 

• Synergy shell: (prun and pcheck).  These programs are Synergy runtime user 
interface. 

o prun launches a parallel application 
o pcheck is a runtime monitor for managing multiple parallel applications 

and processes 
 

ADD PRUN AND LIL INFO HERE 

 
Program ``pcheck'' functions analogously as the ``ps'' command in Unix. It monitors 
parallel applications and keeps track of parallel processes of each application. Pcheck 
also allows killing running processes or applications if necessary. 
 
To make remote processors listening to personal commands, there are two light weight 
utility daemons: the Command Interpreter Daemon (cid) and the Port Mapper Daemon 
(pmd).  Cid interprets a limited set of process control commands from the network for 
each user account. In other words, parallel users on the same processor need different 
cid's. Pmd (the peer leader) provides a "yellow page" service for locating local cid's.  
Pmd is automatically started by any cid and is transparent to all users. 
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FDD is a Fault Detection Daemon.  It is activated by an option in the prun command to 
detect worker process failures at runtime.  
 
Synergy V3.0 requires no root privileged processes. All parallel processes assume 
respective user security and resource restrictions defined at account creation. Parallel use 
of multiple computers imposes no additional security threat to the existing systems. 
Theoretically, there should be one object daemon for each supported object type. For the 
three supported types: tuple space, pipe and files, we saved the pipe daemon by 
implementing it directly in LIL. Thus, Synergy V3.0 has only two object daemons: the 
Tuple Space Handler (tsh) and the File Access Handler (fah).  The object daemons, when 
activated, talk to parallel programs via the LIL operators under the user defined identity 
(via CSL). They are potentially resource hungry. However they only "live" on the 
computers where they are needed and permitted. 
 
Optimal processor assignment is theoretically complex.  Synergy's automatic processor 
binding algorithm is extremely simple: unless specifically designated, it binds all tuple 
space objects, one master and one worker to a single processor.  Other processors run the 
worker-type (with repeatable logic) processes.  Since network is the bottleneck, this 
binding algorithm minimizes network traffic thus promising good performance for most 
applications using the current tuple matching engine.  The full implementation of SLM 
will have a distributed tuple matching engine that promises to fulfill a wider range of 
performance requirements. 
 
Fault tolerance is a natural benefit of the SPP design.  Processor failures discovered 
before a run are automatically isolated.  Worker processor failures during a parallel 
execution is treated in V3.0 by a "tuple shadowing" technique.  Synergy V3.0 can 
automatically recover the lost data from a lost worker with little overhead.  This feature 
brings the availability of a multiprocessor application to be equal to that of a single 
processor and is completely transparent to application programs. 
 
Synergy provides the basis for automatic load balancing.  However, optimal load 
balancing requires adjusting tuple sizes.  Tuple size adjustments can adapt guided self-
scheduling [1], factoring [2] or fixed chunking using the theory of optimal granule size 
for load balancing [3]. 
 
Synergy V3.0 runs on clusters of workstations.  This evaluation copy allows unlimited 
processors across multiple file systems (*requires one binary installation per file system). 
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Comparisons with Other Systems 
 
 

Synergy vs. PVM/MPI 

 
PVM/MPI is a direct message passing system [5,6] that requires inter-process 
communication be carried out based on process task id's.  This requirement forces an 
extra user-programming layer if fault tolerance and load balancing are desired.  This is 
because for load balancing and fault tolerance, working data cannot be "hard wired" to 
specific processors.  An "anonymous" data item can only be supplied using an additional 
data management layer providing a tuple space-like interface.  In this sense, we consider 
PVM/MPI a lower level parallel API as compared to Linda and Synergy. 
 
Fault tolerant and load balanced parallel programs typically require more inter-process 
communication than direct message passing since they refresh their states frequently in 
order to expose more “stateless moments” – critical to load balance and fault tolerance.  
This is a tradeoff that users must make before adapting the Synergy parallel programming 
platform. 
 
 

Synergy vs. Linda 

 
The original Linda implementation [4] uses a virtual global tuple space implemented 
using a compile time analysis method.  The main advantage of the Linda method is the 
potential to reduce communication overhead.  It was believed that many tuple access 
patterns could be un-raveled into single lines of communication.  Thus the compiler can 
build the machine dependent codes directly without going through an intermediate 
runtime daemon that would potentially double the communication latency of each tuple 
transmission.  However, experiments indicate that majority applications do not have 
static tuple access patterns that a compiler can easily discern.  As a result, increased 
communication overhead is inevitable. 
 
The compile time tuple binding method is also detrimental to fault tolerance and load 
balancing. 
 
Another problem in the Linda design is the limited scalability.  Composing all parallel 
programs in one file and compiled by a single compiler makes programming 
unnecessarily complex and is impractical to large-scale applications.  It also presents 
difficulties for mixed language processing. 
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In comparison, Synergy uses dynamic tuple binding at the expense of increased 
communication overhead by using dynamic tuple space daemons.  In the full SLM 
implementation, this overhead will be reduced by a distributed tuple matching engine.  
Practical computational experiments indicate that synchronization overhead (due to load 
imbalance) logged more time than communication.  Thus Synergy's load balancing 
advantage can be used to offset its increased communication overhead. 
 
 

Parallel Programming and Processing in Synergy 
 
A parallel programmer must use the passive objects for communication and 
synchronization purposes. These operations are provided via the language injection 
library (LIL). LIL is linked to source programs at compilation time to generate hostless 
binaries that can run on any binary compatible platforms.  
 
After making the parallel binaries the interconnection of parallel programs (IPC graph) 
should be specified in CSL (Configuration Specification Language). Program ``prun'' 
starts a parallel application. Prun calls CONF to process the IPC graph and to complete 
the program/object-to-processor assignments automatically or as specified. It then 
activates DAC to start appropriate object daemons and remote processes (via remote 
cid's). It preserves the process dependencies until all processes are terminated. 
 
Building parallel applications using Synergy requires the following steps: 
 

1. Parallel program definitions. This requires, preferably, establishing timing models 
for a given application. Timing model analysis provides decomposition 
guidelines. Parallel programs and passive objects are defined using these 
guidelines. 

2. Individual program composition using passive objects. 
3. Individual program compilation. This makes hostless binaries by compiling the 

source programs with the Synergy object library (LIL). It may also include 
moving the binaries to the $HOME/bin directory when appropriate. 

4. Application synthesis. This requires a specification of program-to-program 
communication and synchronization graph (in CSL). When needed, user preferred 
program-to-processor bindings are to be specified as well. 

5. Run (prun). At this time the program synthesis information is mapped on to a 
selected processor pool. Dynamic IPC patterns are generated (by CONF) to guide 
the behavior of remote processes (via DAC and remote cid's). Object daemons are 
started and remote processes are activated (via DAC and remote cid's). 

6. Monitor and control (pcheck). 
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Load Balancing and Performance Optimization 
 
 
 
 

Fault Tolerance 
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Installing and Configuring Synergy 
 
 
Red text: Copied and pasted from syng_man.ps by Dr. Shi 
Gray text: Copied and pasted from a document by Dr. Shi 
 
 

Basic Requirements 
 
In addition to installing Synergy V3.0 on each computer cluster, there are four 
requirements for each ``parallel'' account:  
 

1. An active SNG_PATH symbol definition pointing to the directory where Synergy 
V3.0 is installed. It is usually /usr/local/synergy. 

2. An active command search path ($SNG_PATH/bin) pointing to the directory 
holding the Synergy binaries. 

3. A local host file ($HOME/.sng_hosts). Note that this file is only necessary for a 
host to be used as an application submission console. 

4. An active personal command interpreter (cid) running in the background.  Note 
that the destination of future parallel process's graphic display should be defined 
before starting cid. 

 
Since the local host file is used each time an application is started, it needs to reflect a)  
all accessible processors; and b) selected hosts for the current application. 
 
 

Unpacking 
 
To uncompress, at Unix prompt, type 
 % uncompress synergy-3.0.tar.Z 
To untar, 
 % tar -xvf synergy-3.0.tar 
 
A directory called "synergy" will be created and all files  
unpacked under this directory. 
 
 

Compiling 
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To compile, change to the synergy directory and type 
 % make 
 
The current version has been tested on these platforms: 
 - SUN 3/4, SunOs 
 - IBM RS6000, AIX 
 - DEC Alpha, OSF/1 
 - DEC ULTRIX 
 - Silicon Graphics, SGI 
 - HP, HP-UX 
 - CDC cyber, EP/IX 
 
The makefile will try to detect the operating system and build binaries, libraries and 
sample applications. You may need to edit the makefile if your system requires special 
flags, and/or if your include/library path is nonstandard. Check the makefile for detail. 
 
 

Configuring the Synergy Environment 
 
After the installation procedure is complete, some minor changes must be made to the 
computers environment to access the Synergy system.  When using a UNIX/Linux 
system we enter commands in a command-line environment called a shell.  This shell 
must be configured to recognize the Synergy system.  The two most used shells are C 
Shell (csh) and Bourne Again Shell (bash).  Examples of configuration or profile files 
will be shown below for csh and bash.  Because these files are hidden, you must type: 
 
  ls –a 

 
and press the enter key at the terminal command prompt to view them. 
 
To configure csh, you must edit the “.cshrc” file in your home directory by adding the 
line: 
 

setenv SNG_PATH synergy_directory 

 

where synergy_directory is the directory containing all the binary files and the 
Synergy object library.  Next, add the Synergy binary directory to the path definition by 
typing: 
 
 set path=($SNG_PATH/bin $path) 
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at the command line and pressing enter.  It is important to add $SNG_PATH/bin before 

$path, since “prun” may be overloaded in some operating systems (such as SunOS 5.9).  
To activate the new settings enter: 
 
 source .cshrc 

 
at the command prompt. 
 
An example of a “.cshrc” file after the settings have been changed, with the changes in 
bold, for the SunOS is: 
 
#ident "@(#)local.cshrc 1.2 00/05/01 SMI" 
umask 077 
set path=( /usr/users/shi/synergy/bin /opt/SUNWspro/bin /bin /usr/bin /usr/ucb 
/etc ~ ) 
if ( -d ~/bin ) then 
  set path=( $path ~/bin ) 
endif 
set path=( $path . )  
 
if ( $?prompt ) then 
 set history=32 
endif 
 
set prompt="[%n@%m %c ]%#" 
 
# Initialize new variables 
setenv LD_LIBRARY_PATH "" 
setenv MANPATH "/opt/SUNWspro/man" 
 
# Adding the SUN Companion CD Software, including GCC 2.95 
set path=( $path /opt/sfw/bin /opt/sfw/sparc-sun-solaris2.9/bin /usr/local/bin 
) 
setenv LD_LIBRARY_PATH "${LD_LIBRARY_PATH}:/opt/sfw/lib:/usr/local/lib" 
setenv MANPATH "/opt/sfw/man:/usr/local/man:${MANPATH}" 
 
# Adding Usr-Local-Bin 
set path=( $path /usr/local/bin ) 
setenv LD_LIBRARY_PATH "${LD_LIBRARY_PATH}:/usr/local/lib" 
setenv MANPATH "/usr/local/man:${MANPATH}" 
 
# Usr-Sfw 
set path=( $path /usr/sfw/bin ) 
setenv LD_LIBRARY_PATH "${LD_LIBRARY_PATH}:/usr/lib:/usr/sfw/lib" 
setenv MANPATH "${MANPATH}:/usr/man:/usr/sfw/man" 
 
# DT Window Manager 
set path=( $path /usr/dt/bin ) 
#setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/usr/dt/lib 
setenv MANPATH "${MANPATH}:/usr/dt/man" 
 
# GNOME 
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set path=( $path /usr/share/gnome ) 
setenv LD_LIBRARY_PATH "${LD_LIBRARY_PATH}:/usr/share/lib" 
setenv MANPATH "${MANPATH}:/usr/share/man" 
setenv SNG_PATH /usr/users/shi/synergy 
 
# SBIN 
set path=( $path /sbin /usr/sbin ) 

 
An example “.cshrc” file for Linux OS would be: 
 
set path = ( ~ ~/bin /usr/java/j2sdk_nb/j2sdk1.4.2/bin $path \ 
 /usr/local/X11R6/bin /usr/local/bin /usr/bin /usr/users/shi/synergy/bin  
. ) 
 
set noclobber 
limit coredumpsize 0 
 
#         aliases for all shells 
 
#alias cd            'cd \!*;set prompt="`hostname`:`pwd`>"' 
alias pwd           'echo $cwd' 
alias edt          'textedit -fn screen.b.14' 
 
set history = 1000 
set savehist = 400 
set ignoreeof 
set prompt="%m:%~>" 
 
alias help          man 
alias key           'man -k' 
 
setenv EDITOR 'pico -t' 
setenv MANPATH /usr/man:/usr/local/man:/usr/share/man 
setenv WWW_HOME http://www.cis.temple.edu 
setenv NNTPSERVER netnews.temple.edu 
setenv SNG_PATH /usr/users/shi/synergy 
#source ~/.aliases 
 
# auto goto client 
[ "$tty" != "" ] && [ `hostname` = 'lucas' ] && exec gotoclient 

 
To configure bash you must edit the “.bash_profile” file by adding the lines: 
 

SNG_PATH = synergy_directory 
 

export SNG_PATH 
 

where synergy_directory is the directory containing all the binary files and the 
Synergy object library and add the following entry to the path: 
 

/usr/users/shi/synergy/bin: 
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To activate the new settings enter: 
 
 source .bash_profile 

 
at the command prompt. 
 
Below is an example of the “.bash_profile” file for the Linux OS. 
 
# .bash_profile 
 
# Get the aliases and functions 
if [ -f ~/.bashrc ]; then 
 . ~/.bashrc 
fi 
 
# User specific environment and startup programs 
 
PATH=/usr/users/shi/synergy/bin:/usr/java/j2sdk_nb/j2sdk1.4.2/bin:$PATH:$HOME/bin 
 

SNG_PATH = usr/users/shi/synergy 
 
export PATH 
export SNG_PATH 
unset USERNAME 
 
# auto goto client                                                               
[ "$TERM" != "dumb" ] && [ `hostname` = 'lucas' ] && exec gotoclient    

 
 

Activating a Processor Pool 
 

To activate your personal parallel processors, you will need to start one "cid" one 

each of the host either manually or by some shell script at least once. 

 
In addition, if you have special remote display requirements, you need to setup your 
display characteristics BEFORE starting cid. For example you may want to monitor a 
simulator running on many hosts and "steer" the program as it goes. 
 
In this case, you will need to open as many windows as the number of hosts you want to 
monitor and telnet (rlogin) to these hosts. Then you need to start a cid in each of these 
hosts after you designate your display host. Cid has memories. It will send the local 
display to the designated host as by the "setenv DISPLAY" command. 
 
To start cid enter: 
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 %cid & 
 
Cid will try to connect to another daemon named "pmd".  If it could not contact the peer 
leader in three times, it will start the peer leader automatically. 
 
To check for the total processor accessibility at any host, enter: 
 %cds  
 
This command checks host status for all SELECTED entries in your host file. 
 
Note that you DO NOT have to re-start cid on the de-selected host if you want to re-
select them if a cid is already running, unless you want to change the display setup. 
 
 



Synergy User Manual and Tutorial 

130 

Using Synergy 
 

The Synergy System 
 
 

Using Synergy’s Tuple Space Objects 

 
 
 
 

Using Synergy’s Pipe Objects 

 

 
 
 

Using Synergy’s File Objects 

 

 

 

 

Compiling Synergy Applications 

 
 
 
 

Running Synergy Applications 

 
 
 
 

Debugging Synergy Applications 
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Tuple Space Object Programming 
 
 

A Simple Application – Hello  Synergy! 

 
The first example given in most introductory computer programming books is the “Hello 
World!” program.  To get started with Synergy programming, the “Hello Synergy!” 
program will be the first example.  The master program (tupleHello1Master.c) simply 
opens a tuple space, puts the message in the tuple space and terminates.  The worker 
programs (tupleHello1Worker.c) open the tuple space, read the message from the tuple 
space, display the message and terminate.  The following example programs can be found 
in the example01 directory. 
 
The following is the tuple space “Hello Synergy!” master program: 
 
#include <stdio.h> 
#include <sys/resource.h> 
 
main(){ 
  int tplength;       // Length of ts entry 
  int status;         // Return status for tuple operations 
  int P;              // Number of processors 
  int tsd;            // Problem tuple space identifier 
  char host[128];     // Host machine name 
  char tpname[20];    // Identifier of ts entry 
 
  // Message sent to workers 
  char sendMsg[50] = "Hello Synergy!\0"; 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Master: Opening tuple space\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem",0); 
  printf("Master: Tuple space open complete\n"); 
 
  // Get number of processors 
  P = cnf_getP(); 
  printf("Master: Processors %d\n", P); 
 
  // Send 'Hello Synergy!' to problem tuple space 
  // Set length of send entry 
  tplength = sizeof(sendMsg); 
  // Set name of entry to host 
  strcpy(tpname, host); 
  printf("Master: Putting '%s' Length %d Name %s\n", 
          sendMsg, tplength, tpname); 
  // Put entry in tuple space 
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  status = cnf_tsput(tsd, tpname, sendMsg, tplength); 
  printf("Master: Put '%s' complete\n", sendMsg); 
  // Sleep 1 second 
  sleep(1); 
 
  // Terminate program 
  printf("Master: Terminated\n"); 
  cnf_term(); 
} 

 
The following is the tuple space “Hello Synergy!” worker program: 
 
#include <stdio.h> 
#include <sys/resource.h> 
 
main(){ 
  int tsd;           // Problem tuple space identifier 
  int status;        // Return status for tuple operations 
  int tplength;      // Length of ts entry 
  char host[128];    // Host machine name 
  char tpname[20];   // Identifier of ts entry 
  char recdMsg[50];  // Message received from master 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple space 
  printf("Worker: Opening tuple space\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem",0); 
  printf("Worker: Tuple space open complete\n"); 
 
  // Set name to any 
  strcpy(tpname,"*"); 
  // Read problem from problen tuple space 
  tplength = cnf_tsread(tsd, tpname, recdMsg, 0); 
  printf("Worker: Taking item (%s)\n", tpname); 
 
  // Normal receive 
  if (tplength > 0){ 
    printf("Worker: Took message: %s from %s\n", 
            recdMsg, tpname); 
  } 
 
  // Terminate program 
  printf("Worker: Terminated\n"); 
  cnf_term(); 
} 

 
Before the master and worker programs can execute these programs, a Command 
Specification Language (csl) file must be created. It would be much more convenient to 
use a makefile to compile the programs.  Examples of both are below. 
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The csl file the programs is: 
 
configuration: tupleHello1; 
 
m: master = tupleHello1Master 
 (factor = 1 
 threshold = 1 
 debug = 0 
        ) 
   -> f: problem 
        (type = TS) 
   -> m: worker = tupleHello1Worker 
 (type = slave) 
   -> f: result 
 (type = TS) 
   -> m: master; 

 
The makefile for the programs is: 
 
CFLAGS = -O1 
OBJS = -L$(SNG_PATH)/obj -lsng -lnsl -lsocket 
 
all : nxdr copy 
 
nxdr :  master1 worker1 
 
master1 : tupleHello1Master.c 
 gcc $(CFLAGS) -o tupleHello1Master tupleHello1Master.c $(OBJS) 
 
worker1 : tupleHello1Worker.c 
 gcc $(CFLAGS) -o tupleHello1Worker tupleHello1Worker.c $(OBJS) 
 
copy : tupleHello1Master tupleHello1Worker 
 cp tupleHello1Master $(HOME)/bin 
 cp tupleHello1Worker $(HOME)/bin 

 
To run the “Hello Synergy!” distributed application: 
 

1. Make the executables by typing “make” and pressing the enter key. 
2. Run the application by typing “prun tupleHello1” and pressing the enter key. 

 
The screen output for the master terminal should resemble: 
 
[c615111@owin ~/fpc01 ]>prun tupleHello1 
== Checking Processor Pool: 
++ Benchmark (186) ++ (owin) ready. 
== Done. 
== Parallel Application Console: (owin) 
== CONFiguring: (tupleHello1.csl) 
== Default directory: (/usr/classes/cis6151/c615111/fpc01) 
++      Automatic program assignment: (worker)->(owin) 



Synergy User Manual and Tutorial 

134 

++      Automatic program assignment: (master)->(owin) 
++      Automatic object assignment: (problem)->(owin) pred(1) succ(1) 
++      Automatic object assignment: (result)->(owin) pred(1) succ(1) 
== Done. 
== Starting Distributed Application Controller ... 
Verifying process [|(c615111)|*/tupleHello1Master 
CID verify ****'d process (bin/tupleHello1Master) 
Verifying process [|(c615111)|*/tupleHello1Worker 
CID verify ****'d process (bin/tupleHello1Worker) 
** (tupleHello1.prcd) verified, all components executable. 
CID starting object (result) 
CID starting object (problem) 
CID starting program. path (bin/tupleHello1Master) 
Master: Opening tuple space 
CID starting program. path (bin/tupleHello1Worker) 
Master: Tuple space open complete 
Master: Processors 1 
Master: Putting 'Hello Synergy!' Length 50 Name owin 
Master: Put 'Hello Synergy!' complete 
Worker: Opening tuple space 
** (tupleHello1.prcd) started. 
Worker: Tuple space open complete 
Worker: Taking item (owin) 
Worker: Took message: Hello Synergy! from owin 
Worker: Terminated 
CID. subp(27144) terminated 
Setup exit status for (27144) 
Master: Terminated 
CID. subp(27143) terminated 
Setup exit status for (27143) 
CID. subp(27141) terminated 
Setup exit status for (27141) 
== (tupleHello1) completed. Elapsed [1] Seconds. 
CID. subp(27142) terminated 
Setup exit status for (27142) 
[c615111@owin ~/fpc01 ]> 

 
The output for the worker terminal should resemble: 
 
CID verify ****'d process (bin/tupleHello1Worker) 
CID starting program. path (bin/tupleHello1Worker) 
Worker: Opening tuple space 
Worker: Tuple space open complete 
Worker: Taking item (owin) 
Worker: Took message: Hello Synergy! from owin 
Worker: Terminated 
CID. subp(21015) terminated 
Setup exit status for (21015) 

 
The output shows Synergy’s distributed application initialization screen output, the 
execution screen output of the master and worker programs, and termination screen 
output of both programs and the distributed application. 
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Sending and Receiving Data 
 

Hello Workers!—Hello Master!!! 

 
In this example application, the master (tupleHello2Master.c) sends the message “Hello 
Workers!” to all workers (tupleHello2Worker.c) and gets the response “Hello Master!!!” 
and the worker’s name from each worker.  The source code, makefile and csl file for this 
application is located in the example02 directory. 
 
The following is the tuple space “Hello Workers!—Hello Master!!!” master program: 
 
#include <stdio.h> 
#include <sys/resource.h> 
 
main() { 
  int tplength;       // Length of ts entry 
  int status;         // Return status for tuple operations 
  int P;              // Number of processors 
  int i;              // Counter index 
  int res;            // Result tuple space identifier 
  int tsd;            // Problem tuple space identifier 
  char host[128];     // Host machine name 
  char tpname[20];    // Identifier of ts entry 
  char recdMsg[50];   // Message received from workers 
 
  // Message sent to workers 
  char sendMsg[50] = "Hello Workers!\0"; 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Master: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem",0); 
  // Open result tuple space 
  res = cnf_open("result",0); 
  printf("Master: Tuple spaces open complete\n"); 
 
  // Get number of processors 
  P = cnf_getP(); 
  printf("Master: Processors %d\n", P); 
 
  // Send 'Hello Synergy!' to problem tuple space 
  // Set length of send entry 
  tplength = sizeof(sendMsg); 
  // Set name of entry to host 
  strcpy(tpname, host); 
  printf("Master: Putting '%s' Length %d Name %s\n", 
          sendMsg, tplength, tpname); 
  // Put entry in tuple space 
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  status = cnf_tsput(tsd, tpname, sendMsg, tplength); 
  printf("Master: Put '%s' complete\n", sendMsg); 
  // Sleep 1 second 
  sleep(1); 
 
  // Receive 'Hello Back!!!' from result tuple space 
  for(i=0; i<P; i++){ 
    printf("Master: Waiting for reply\n"); 
    // Set name to any 
    strcpy(tpname,"*"); 
    // Get result from result tuple space 
    tplength = cnf_tsget(res, tpname, recdMsg, 0); 
    printf("Master: Taking item from %s\n", tpname); 
    printf("Master: Took message '%s'\n", recdMsg); 
  } 
 
  // Terminate program 
  printf("Master: Terminated\n"); 
  cnf_term(); 
} 

 
The following is the tuple space “Hello Workers!—Hello Master!!!” worker program: 
 
#include <stdio.h> 
#include <sys/resource.h> 
 
main(){ 
  int tsd;           // Problem tuple space identifier 
  int res;           // Result tuple space identifier 
  int status;        // Return status for tuple operations 
  int tplength;      // Length of ts entry 
  char host[128];    // Host machine name 
  char tpname[20];   // Identifier of ts entry 
  char recdMsg[50];  // Message received from master 
 
  // Message sent back to master 
  char sendMsg[50] = "Hello Master!!!\0"; 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Worker: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem",0); 
  // Open result tuple space 
  res = cnf_open("result",0); 
  printf("Worker: Tuple spaces open complete\n"); 
 
  // Set name to any 
  strcpy(tpname,"*"); 
  // Read problem from problen tuple space 
  tplength = cnf_tsread(tsd, tpname, recdMsg, 0); 
  printf("Worker: Taking item (%s)\n", tpname); 
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  // Normal receive 
  if (tplength > 0){ 
    printf("Worker: Took message: %s from %s\n", 
            recdMsg, tpname); 
    // Set size of entry 
    tplength = sizeof(sendMsg); 
    // Set name to host 
    sprintf(tpname,"%s", host); 
    printf("Worker: Put '%s' Length %d Name %s\n", 
            sendMsg, tplength, tpname); 
    // Put response in result tuple space 
    status = cnf_tsput(res, tpname, sendMsg, tplength); 
    printf("Worker: Reply sent\n"); 
  } 
 
  // Terminate program 
  printf("Worker: Terminated\n"); 
  cnf_term(); 
} 

 
The makefile and csl file are similar to the “Hello Synergy!” program except that all 
occurrences of “tupleHello1…” is changed to “tupleHello2…” in both files.  To run the 
“Hello Synergy!” distributed application: 
 

1. Make the executables by typing “make” and pressing the enter key. 
2. Run the application by typing “prun tupleHello2” and pressing the enter key. 

 
The screen output for the master terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
[c615111@owin ~/fpc02 ]>prun tupleHello2 
Master: Tuple spaces open complete 
Master: Processors 2 
Master: Putting 'Hello Workers!' Length 50 Name owin 
Master: Put 'Hello Workers!' complete 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: Taking item owin 
Worker: Took message: ‘Hello Workers!’ from owin 
Worker: Put 'Hello Master!!!' Length 50 Name owin 
Worker: Reply sent 
Worker: Terminated 
Master: Waiting for reply 
Master: Taking item from saber 
Master: Took message 'Hello Master!!!' 
Master: Waiting for reply 
Master: Taking item from owin 
Master: Took message 'Hello Master!!!' 
Master: Terminated 
[c615111@owin ~/fpc02 ]> 
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The screen output for the worker terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: Taking item owin 
Worker: Took message: ‘Hello Workers!’ from owin 
Worker: Put 'Hello Master!!!' Length 50 Name saber 
Worker: Reply sent 
Worker: Terminated 
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Sending and Receiving Data Types 
 

Sending Various Data Types 

 
Synergy can put and get more than characters from its tuple space.  The following 
example shows how to put various data types into a tuple space and get various data types 
out of a tuple space.  The master program (tuplePassMaster.c) puts different data types 
into the problem tuple space, and the worker (tuplePassWorker.c) gets them, displays 
them and puts messages in the result tuple space identifying which data types it took.  
This application also uses a distributed semaphore to ensure that the workers take data 
properly.  It also demonstrates the difference between the cnf_read() and cnf_get() 
functions.  The tuplePass application is located in the example03 directory.  The 
tuplePass.h file has the definitions for the constant and the data structure used in the 
application. 
 
The following is the tuple space “data type passing” master program: 
 
#include <stdio.h> 
#include <sys/resource.h> 
 
#include "tuplePass.h" 
 
main(){ 
  int tplength;       // Length of ts entry 
  int status;         // Return status for tuple operations 
  int P;              // Number of processors 
  int i;              // Counter index 
  int res;            // Result tuple space identifier 
  int tsd;            // Problem tuple space identifier 
  int sem;            // Semaphore 
  char host[128];     // Host machine name 
  char tpname[20];    // Identifier of ts entry 
  char recdMsg[50];   // Message received from workers 
 
  // Different datatypes to send to workers 
  // Integer sent to worker 
  int num = 12000; 
  int *numPtr = &num; 
  // Long integer sent to worker 
  long lnum = 1000000; 
  long *lnumPtr = &lnum; 
  // Float sent to worker 
  float frac = 0.5; 
  float *fracPtr = &frac; 
  // Double sent to worker 
  double dfrac = 12345.678; 
  double *dfracPtr = &dfrac; 
  // Integer array sent to worker 
  int numArr[MAX] = {0,1,2,3,4}; 
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  // Double array sent to worker 
  double dblArr[MAX] = {10000.1234, 2000.567, 
                        300.89, 40.0, 5.01}; 
  // String sent to worker 
  char sendMsg[50] = "A text string.\0"; 
  // Struct sent to worker 
  struct person bob = {"Bob", 
                       "123 Broad St.", 
                       "Pliladelphia", "PA", "19124", 
                        20, "brown", 70.5, "red"}; 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Master: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem",0); 
  // Open result tuple space 
  res = cnf_open("result",0); 
  printf("Master: Tuple spaces open complete\n"); 
 
  // Get number of processors 
  P = cnf_getP(); 
  printf("Master: Processors %d\n", P); 
 
  // Put semaphore in problem tuple space 
  // Set name to sem 
  strcpy(tpname,"sem"); 
  // Set length for semaphore 
  tplength = sizeof(int); 
  // Place the semaphore signal in problem ts 
  printf("Master: Putting semaphore\n"); 
  status = cnf_tsput(tsd, tpname, &sem, tplength); 
 
  // Put int num in ts 
  // Set length of send entry 
  tplength = sizeof(int); 
  // Set name of entry to num 
  strcpy(tpname, "D_num"); 
  printf("Master: Putting '%d' Length %d Name %s\n", 
          num, tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, numPtr, tplength); 
  printf("Master: Put '%d' complete\n", num); 
 
  // Put long lnum in ts 
  // Set length of send entry 
  tplength = sizeof(long); 
  // Set name of entry to lnum 
  strcpy(tpname, "D_lnum"); 
  printf("Master: Putting '%ld' Length %d Name %s\n", 
          lnum, tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, lnumPtr, tplength); 
  printf("Master: Put '%ld' complete\n", lnum); 
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  // Put float frac in ts 
  // Set length of send entry 
  tplength = sizeof(float); 
  // Set name of entry to frac 
  strcpy(tpname, "D_frac"); 
  printf("Master: Putting '%f' Length %d Name %s\n", 
          frac, tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, fracPtr, tplength); 
  printf("Master: Put '%f' complete\n", frac); 
 
  // Put double dfrac in ts 
  // Set length of send entry 
  tplength = sizeof(double); 
  // Set name of entry to dfrac 
  strcpy(tpname, "D_dfrac"); 
  printf("Master: Putting '%g' Length %d Name %s\n", 
          dfrac, tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, (char *)dfracPtr, tplength); 
  printf("Master: Put '%g' complete\n", dfrac); 
 
  // Put int array numArr in ts 
  // Set length of send entry 
  tplength = sizeof(int)*MAX; 
  // Set name of entry to numArr 
  strcpy(tpname, "D_numArr"); 
  printf("Master: Putting\n  "); 
  for(i=0; i<MAX; i++) 
    printf("%d ", numArr[i]); 
  printf("\n  Length %d Name %s\n", tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, (char *)numArr, tplength); 
  printf("Master: Put '%s' complete\n", tpname); 
 
  // Put int array dblArr in ts 
  // Set length of send entry 
  tplength = sizeof(double)*MAX; 
  // Set name of entry to dblArr 
  strcpy(tpname, "D_dblArr"); 
  printf("Master: Putting\n  "); 
  for(i=0; i<MAX; i++) 
    printf("%g ", dblArr[i]); 
  printf("  \nLength %d Name %s\n", tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, (char *)dblArr, tplength); 
  printf("Master: Put '%s' complete\n", tpname); 
 
  // Put struct bob in ts 
  // Set length of send entry 
  tplength = sizeof(struct person); 
  // Set name of entry to bob 
  strcpy(tpname, "D_bob"); 
  printf("Master: Putting\n"); 
  printf("  %s\n", bob.name); 
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  printf("  %s %s, %s %s\n", 
         bob.address, bob.city, bob.state, bob.zip); 
  printf("  %d %s %f %s\n", 
         bob.age, bob.eyes, bob.height, bob.hair); 
  printf("  Length %d Name %s\n", tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, bob, tplength); 
  printf("Master: Put struct bob complete\n"); 
 
  // Put string in ts 
  // Set length of send entry 
  tplength = sizeof(sendMsg); 
  // Set name of entry to msg 
  strcpy(tpname, "D_msg"); 
  printf("Master: Putting '%s' Length %d Name %s\n", 
         sendMsg, tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, sendMsg, tplength); 
  printf("Master: Put '%s' complete\n", sendMsg); 
 
  // Receive results from result tuple space 
  for(i=0; i<8; i++){ 
    printf("Master: Waiting for reply\n"); 
    // Set name to any 
    strcpy(tpname,"*"); 
    // Get result from result tuple space 
    tplength = cnf_tsget(res, tpname, recdMsg, 0); 
    printf("Master: Taking item from (%s)\n", tpname); 
    printf("Master: %s took '%s'\n", tpname, recdMsg); 
  } 
 
  // Send terminal signal to workers 
  printf("Master: Putting terminal signal in problem ts\n"); 
  // Set length of send entry 
  tplength = sizeof(int); 
  // Set name of entry to term 
  strcpy(tpname, "D_term"); 
  // Put entries in tuple space 
  status = cnf_tsput(tsd, tpname, numPtr, tplength); 
  printf("Master: Put terminal in ts\n"); 
 
  // Terminate program 
  printf("Master: Terminated\n"); 
  cnf_term(); 
 
} 

 
The following is the tuple space data type passing worker program: 
 
#include <stdio.h> 
#include <sys/resource.h> 
 
#include "tuplePass.h" 
 
main(){ 
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  int tsd;           // Problem tuple space identifier 
  int res;           // Result tuple space identifier 
  int status;        // Return status for tuple operations 
  int tplength;      // Length of ts entry 
  int i;             // Counter index 
  int sem = 0;       // Semaphore 
  char host[128];    // Host machine name 
  char tpname[20];   // Identifier of ts entry 
  char sendMsg[50];  // Message sent back to master 
   
  // Different datatypes to receive from master 
  // Integer received from master 
  int num; 
  // Long integer received from master 
  long lnum; 
  // Float received from master 
  float frac; 
  // Double received from master 
  double dfrac; 
  // Integer array received from master 
  int numArr[MAX]; 
  // Double array received from master 
  double dblArr[MAX]; 
  // String received from master 
  char recdMsg[50]; 
  // Struct received from master 
  struct person bob; 
 
  // Initialize sendMsg 
  strcpy(sendMsg, ""); 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Worker: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem",0); 
  // Open result tuple space 
  res = cnf_open("result",0); 
  printf("Worker: Tuple spaces open complete\n"); 
 
  while(1){ 
    // Set name to sem 
    strcpy(tpname,"sem"); 
    // Read semaphore from problem tuple space 
    tplength = cnf_tsget(tsd, tpname, &sem, 0); 
    printf("Worker: Taking semaphore\n"); 
    // Set name to any 
    strcpy(tpname,"D_*"); 
    tplength = cnf_tsread(tsd, tpname, recdMsg, 0); 
    printf("Worker: Taking item %s\n", tpname); 
 
 
    // Get int num from ts 
    if(!strcmp(tpname, "D_num")){ 
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      // Read problem from problem tuple space 
      tplength = cnf_tsget(tsd, tpname, &num, 0); 
      // Record the data type received 
      strcpy(sendMsg, tpname); 
      // Display the data 
      printf("Worker: took %s '%d'\n", tpname, num); 
      // Send reply back to master 
      // Set size of entry 
      tplength = sizeof(sendMsg); 
      // Set name to host 
      strcpy(tpname, host); 
      printf("Worker: Put '%s' Length %d Name %s\n", 
             sendMsg, tplength, tpname); 
      // Put response in result tuple space 
      status = cnf_tsput(res, tpname, sendMsg, tplength); 
      printf("Worker: Reply sent\n"); 
    } 
 
    // Get int lnum from ts 
    else if(!strcmp(tpname, "D_lnum")){ 
      // Read problem from problem tuple space 
      tplength = cnf_tsget(tsd, tpname, &lnum, 0); 
      // Record the data type recieve 
      strcpy(sendMsg, tpname); 
      // Display the data 
      printf("Worker: took  %s '%ld'\n", tpname, lnum); 
      // Send reply back to master 
      // Set size of entry 
      tplength = sizeof(sendMsg); 
      // Set name to host 
      strcpy(tpname, host); 
      printf("Worker: Put '%s' Length %d Name %s\n", 
              sendMsg, tplength, tpname); 
      // Put response in result tuple space 
      status = cnf_tsput(res, tpname, sendMsg, tplength); 
      printf("Worker: Reply sent\n"); 
    } 
 
    // Get int frac from ts 
    else if(!strcmp(tpname, "D_frac")){ 
      // Read problem from problem tuple space 
      tplength = cnf_tsget(tsd, tpname, &frac, 0); 
      // Record the data type received 
      strcpy(sendMsg, tpname); 
      // Display the data 
      printf("Worker: took %s '%f'\n", tpname, frac); 
      // Send reply back to master 
      // Set size of entry 
      tplength = sizeof(sendMsg); 
      // Set name to host 
      strcpy(tpname, host); 
      printf("Worker: Put '%s' Length %d Name %s\n", 
             sendMsg, tplength, tpname); 
      // Put response in result tuple space 
      status = cnf_tsput(res, tpname, sendMsg, tplength); 
      printf("Worker: Reply sent\n"); 
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    } 
 
    // Get double dfrac from ts 
    else if(!strcmp(tpname, "D_dfrac")){ 
      // Read problem from problem tuple space 
      tplength = cnf_tsget(tsd, tpname, &dfrac, 0); 
      // Record the data type received 
      strcpy(sendMsg, tpname); 
      // Display the data 
      printf("Worker: took (%s) '%g'\n", tpname, dfrac); 
      // Send reply back to master 
      // Set size of entry 
      tplength = sizeof(sendMsg); 
      // Set name to host 
      strcpy(tpname, host); 
      printf("Worker: Put '%s' Length %d Name %s\n", 
             sendMsg, tplength, tpname); 
      // Put response in result tuple space 
      status = cnf_tsput(res, tpname, sendMsg, tplength); 
      printf("Worker: Reply sent\n"); 
    } 
 
    // Get integer array numArr 
    else if(!strcmp(tpname, "D_numArr")){ 
      // Read problem from problem tuple space 
      tplength = cnf_tsget(tsd, tpname, numArr, 0); 
      // Record the data type received 
      strcpy(sendMsg, tpname); 
      // Display the data 
      printf("Worker: took %s\n  ", tpname); 
      for(i=0; i<MAX; i++) 
        printf("%d ", numArr[i]); 
      printf("\n  Length(%d) Name(%s)\n", tplength, tpname); 
      // Send reply back to master 
      // Set size of entry 
      tplength = sizeof(sendMsg); 
      // Set name to host 
      strcpy(tpname, host); 
      printf("Worker: Put '%s' Length %d Name %s\n", 
             sendMsg, tplength, tpname); 
      // Put response in result tuple space 
      status = cnf_tsput(res, tpname, sendMsg, tplength); 
      printf("Worker: Reply sent\n"); 
    } 
 
    // Get double array dblArr 
    else if(!strcmp(tpname, "D_dblArr")){ 
      // Read problem from problem tuple space 
      tplength = cnf_tsget(tsd, tpname, dblArr, 0); 
      // Record the data type received 
      strcpy(sendMsg, tpname); 
      // Display the data 
      printf("Worker: took %s\n  ", tpname); 
      for(i=0; i<MAX; i++) 
        printf("%g ", dblArr[i]); 
      printf("\n  Length %d Name %s\n", tplength, tpname); 
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      // Send reply back to master 
      // Set size of entry 
      tplength = sizeof(sendMsg); 
      // Set name to host 
      strcpy(tpname, host); 
      printf("Worker: Put '%s' Length %d Name %s\n", 
              sendMsg, tplength, tpname); 
      // Put response in result tuple space 
      status = cnf_tsput(res, tpname, sendMsg, tplength); 
      printf("Worker: Reply sent\n"); 
    } 
 
    // Get struct person bob 
    else if(!strcmp(tpname, "D_bob")){ 
      // Read problem from problem tuple space 
      tplength = cnf_tsget(tsd, tpname, &bob, 0); 
      // Record the data type received 
      strcpy(sendMsg, tpname); 
      // Display the data 
      printf("Worker: took\n"); 
      printf("  %s\n", bob.name); 
      printf("  %s %s, %s %s\n", bob.address, 
             bob.city, bob.state, bob.zip); 
      printf("  %d %s %f %s\n", bob.age, bob.eyes, 
             bob.height, bob.hair); 
      printf("  Length %d Name %s\n", tplength, tpname); 
      // Send reply back to master 
      // Set size of entry 
      tplength = sizeof(sendMsg); 
      // Set name to host 
      strcpy(tpname, host); 
      printf("Worker: Put '%s' Length %d Name %s\n", 
             sendMsg, tplength, tpname); 
      // Put response in result tuple space 
      status = cnf_tsput(res, tpname, sendMsg, tplength); 
      printf("Worker: Reply sent\n"); 
    } 
 
    // Get string  
    else if(!strcmp(tpname, "D_msg")){ 
      // Read problem from problem tuple space 
      tplength = cnf_tsget(tsd, tpname, recdMsg, 0); 
      // Record the data type received 
      strcpy(sendMsg, tpname); 
      // Display the data 
      printf("Worker: took %s '%s'\n", tpname, recdMsg); 
      // Send reply back to master 
      // Set size of entry 
      tplength = sizeof(sendMsg); 
      // Set name to host 
      strcpy(tpname, host); 
      printf("Worker: Put '%s' Length %d Name %s\n", 
             sendMsg, tplength, tpname); 
      // Put response in result tuple space 
      status = cnf_tsput(res, tpname, sendMsg, tplength); 
      printf("Worker: Reply sent\n"); 
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    } 
 
    // Get terminal 
    else if(!strcmp(tpname, "D_term")){ 
      printf("Worker: Received terminal\n"); 
      // Set name to sem 
      strcpy(tpname,"sem"); 
      // Set length for semaphore 
      tplength = sizeof(int); 
      // Replace the semaphore signal in problem ts 
      printf("Worker: Putting semaphore\n"); 
      status = cnf_tsput(tsd, tpname, &sem, tplength); 
      break; 
    } 
 
    // Set name to sem 
    strcpy(tpname,"sem"); 
    // Set length for semaphore 
    tplength = sizeof(int); 
    // Replace the semaphore signal in problem ts 
    printf("Worker: Putting semaphore\n"); 
    status = cnf_tsput(tsd, tpname, &sem, tplength); 
    // Sleep 1 second 
    sleep(1); 
 
  } 
 
  // Terminate program 
  printf("Worker: Terminated\n"); 
  cnf_term(); 
 
} 

 
The makefile and csl file are similar to the last two applications except in the naming of 
the application objects and files.  To run the data passing distributed application: 
 

1. Make the executables by typing “make” and pressing the enter key. 
2. Run the application by typing “prun tuplePass” and pressing the enter key. 

 
  The screen output for the master terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
[c615111@owin ~/fpc03 ]>prun tuplePass2 
Master: Opening tuple spaces 
Master: Tuple spaces open complete 
Master: Processors 2 
Master: Putting semaphore 
Master: Putting '12000' Length 4 Name D_num 
Master: Put '12000' complete 
Master: Putting '1000000' Length 4 Name D_lnum 
Master: Put '1000000' complete 
Master: Putting '0.500000' Length 4 Name D_frac 
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Master: Put '0.500000' complete 
Master: Putting '12345.7' Length 8 Name D_dfrac 
Master: Put '12345.7' complete 
Master: Putting 
  0 1 2 3 4 
Length 20 Name D_numArr 
Master: Put 'D_numArr' complete 
Master: Putting 
  10000.1 2000.57 300.89 40 5.01 
  Length 40 Name D_dblArr 
Master: Put 'D_dblArr' complete 
Master: Putting 
  Bob 
  123 Broad St. Pliladelphia, PA 19124 
  20 brown 70.500000 red 
  Length 164 Name D_bob 
Master: Put struct bob complete 
Master: Putting 'A text string.' Length 50 Name D_msg 
Master: Put 'A text string.' complete 
Master: Waiting for reply 
Master: Taking item from saber 
Master: saber took 'D_num' 
Master: Waiting for reply 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: Taking semaphore 
Worker: Taking item D_lnum 
Worker: took  D_lnum '1000000' 
Worker: Put 'D_lnum' Length 50 Name owin 
Master: Taking item from owin 
Master: owin took 'D_lnum' 
Master: Waiting for reply 
Worker: Reply sent 
Worker: Putting semaphore 
Master: Taking item from saber 
Master: saber took 'D_frac' 
Master: Waiting for reply 
Worker: Taking semaphore 
Worker: Taking item D_dfrac 
Worker: took (D_dfrac) '12345.7' 
Worker: Put 'D_dfrac' Length 50 Name owin 
Master: Taking item from owin 
Master: owin took 'D_dfrac' 
Master: Waiting for reply 
Worker: Reply sent 
Worker: Putting semaphore 
Master: Taking item from saber 
Master: saber took 'D_numArr' 
Master: Waiting for reply 
Worker: Taking semaphore 
Worker: Taking item D_dblArr 
Worker: took D_dblArr 
  10000.1 2000.57 300.89 40 5.01 
  Length 40 Name D_dblArr 
Worker: Put 'D_dblArr' Length 50 Name owin 
Worker: Reply sent 
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Worker: Putting semaphore 
Master: Taking item from owin 
Master: owin took 'D_dblArr' 
Master: Waiting for reply 
Master: Taking item from saber 
Master: saber took 'D_bob' 
Master: Waiting for reply 
Worker: Taking semaphore 
Worker: Taking item D_msg 
Worker: took D_msg 'A text string.' 
Worker: Put 'D_msg' Length 50 Name owin 
Worker: Reply sent 
Worker: Putting semaphore 
Master: Taking item from owin 
Master: owin took 'D_msg' 
Master: Putting terminal signal in problem ts 
Master: Put terminal in ts 
Master: Terminated 
Worker: Taking semaphore 
Worker: Taking item D_term 
Worker: Received terminal 
Worker: Putting semaphore 
Worker: Terminated 

 
The screen output for the worker terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: Taking semaphore 
Worker: Taking item D_num 
Worker: took D_num '12000' 
Worker: Put 'D_num' Length 50 Name saber 
Worker: Reply sent 
Worker: Putting semaphore 
Worker: Taking semaphore 
Worker: Taking item D_frac 
Worker: took D_frac '0.500000' 
Worker: Put 'D_frac' Length 50 Name saber 
Worker: Reply sent 
Worker: Putting semaphore 
Worker: Taking semaphore 
Worker: Taking item D_numArr 
Worker: took D_numArr 
  0 1 2 3 4 
  Length(20) Name(D_numArr) 
Worker: Put 'D_numArr' Length 50 Name saber 
Worker: Reply sent 
Worker: Putting semaphore 
Worker: Taking semaphore 
Worker: Taking item D_bob 
Worker: took 
  Bob 
  123 Broad St. Philadelphia, PA 19124 
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  20 brown 70.500000 red 
  Length 164 Name D_bob 
Worker: Put 'D_bob' Length 50 Name saber 
Worker: Reply sent 
Worker: Putting semaphore 
Worker: Taking semaphore 
Worker: Taking item D_term 
Worker: Received terminal 
Worker: Putting semaphore 
Worker: Terminated 
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Getting Workers to Work 
 

Sum of First N Integers 

The calculation of the sum of the first n integers or ∑
=

n

i

i
1

 can be easily calculated in a 

regular computer program.  An ANSI C program would be: 
 
#include <stdio.h> 
#define N 6 
 
int main{ 
  int i; 
  int sum = 0; 
 
  for(i=N; i>=N; i--) 
    sum+=i; 
 
  printf(“The sum of the first %d integers is %d\n”, N, sum); 
  return 0; 
} 

 
This problem can easily be performed in a parallel program by having the master 
(tupleSum1Master.c) put each integer into the problem tuple space.  The workers 
(tupleSum1Workers.c) take the integers out of the problem tuple space, tally their 
respective sub sums and put the sub sums into the result tuple space.  The master gets the 
sub sums from the result tuple space and produces the desires sum.  This application is 
located in the example04 directory. 
 
The following is the tuple space sum of n integers master program: 
 
#include <stdio.h> 
#include <sys/resource.h> 
 
main(){ 
 
  int P;                    // Number of processors 
  int i;                    // Counter index 
  int status;               // Return status for tuple operations 
  int res;                  // Result tuple space identifier 
  int tsd;                  // Problem tuple space identifier 
  int maxNum = 6;           // MAX of n for sum of 1..n 
  int sendNum = 0;          // Number sent to problem ts 
  int *sendPtr = &sendNum;  // Pointer to sendNum 
  int recdSum = 0;          // Subsum received from result ts 
  int *recdPtr = &recdSum;  // Pointer to recdSum 
  int calcSum = 0;          // Calculated sum 
  int sumTotal = 0;         // Sum total of all subsums 
  int tplength;             // Length of ts entry 
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  char tpname[20];          // Identifier of ts entry 
  char host[128];           // Host machine name 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Master: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem", 0); 
  // Open result tuple space 
  res = cnf_open("result", 0); 
  printf("Master: Tuple spaces open complete\n"); 
 
  // Get number of processors 
  P = cnf_getP(); 
  printf("Master: Processors %d\n", P); 
 
  // Send integers to problem tuple space 
  // Set length of entry 
  tplength = sizeof(int); 
  printf("Master: tplength = (%d)\n", tplength); 
  // Set maximum n 
  sendNum = maxNum; 
  printf("Master: Putting 1...%d to problem tuple space\n", maxNum); 
  // Loop until all numbers are sent to workers 
  while (sendNum > 0) { 
    printf("Master: Putting %d\n", sendNum); 
    // Set name of entry 
    sprintf(tpname,"%d", sendNum); 
    // Put entry in problem tuple space 
    status = cnf_tsput(tsd, tpname, (char *)sendPtr, tplength); 
    // Decrement number to set entry value 
    sendNum--; 
  } 
  printf("Master: Finished sending 1...%d to tuple space\n", maxNum); 
 
  // Insert negative integer tuple as termination signal 
  printf("Master: Sending terminal signal\n"); 
  // Set length of entry 
  tplength = sizeof(int); 
  // Set entry value 
  sendNum = -1; 
  // Set entry name 
  sprintf(tpname, "%d", maxNum+1); 
  // Put entry in problem tuple space 
  status = cnf_tsput(tsd, tpname, (char *)sendPtr, tplength); 
  printf("Master: Finished sending terminal signal\n"); 
 
  // Receive sub sums from result tuple space 
  i = 1; 
  printf("Master: Getting sub sums from result tuple space\n"); 
  while (i <= P){ 
    // Set name of entry to any 
    strcpy(tpname,"*"); 
    // Get entry from result tuple space 
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    tplength = cnf_tsget(res, tpname, (char *)recdPtr, 0); 
    printf("Master: Received %d from %s\n", recdSum, tpname); 
    // Add result to total 
    sumTotal += recdSum; 
    // Increment counter 
    i++; 
  } 
  printf("Master: The sum total is: %d\n", sumTotal); 
 
  // Calculate correct answer with math formula 
  calcSum = (maxNum*(maxNum+1))/2; 
  printf ("Master: The calculated sum is: %d\n", calcSum); 
 
  // Compare results 
  if(calcSum == sumTotal) 
    printf("Master: The workers gave the correct answer\n"); 
  else 
    printf("Master: The workers gave an incorrect answer\n"); 
 
  // Terminate program 
  printf("Master: Terminated\n"); 
  cnf_term(); 
} 

 
The following is the tuple space sum of n integers worker program: 
 
#include <stdio.h> 
#include <sys/resource.h> 
 
main(){ 
 
  // Variable declarations 
  int tsd;                  // Problem tuple space identifier 
  int res;                  // Result tuple space identifier 
  int recdNum = 0;          // Number received to be added 
  int *recdPtr = &recdNum;  // Pointer to recdNum 
  int sendSum = 0;          // Sum of numbers received 
  int *sendPtr = &sendSum;  // Pointer to sendSum 
  int status;               // Return status for tuple operations 
  int tplength;             // Length of ts entry 
  char tpname[20];          // Identifier of ts entry 
  char host[128];           // Host machine name 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Worker: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem", 0); 
  // Open result tuple space 
  res = cnf_open("result", 0); 
  printf("Worker: Tuple spaces open complete\n"); 
 
  // Loop forever to accumulate sendSum 
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  printf("Worker: Beginning to accumulate sum\n"); 
  while(1){ 
    // Set name to any 
    strcpy(tpname, "*"); 
    // Get problem from tuple space 
    tplength = cnf_tsget(tsd, tpname, (char *)recdPtr, 0); 
    printf("Worker: Took item %s\n", tpname); 
    // If normal receive 
    if(recdNum > 0){ 
      // Add to sum 
      sendSum += recdNum; 
      printf("Worker: Present subtotal is %d\n", sendSum); 
    } 
    // Else terminate worker 
    else{ 
      printf("Worker: Received terminal signal\n"); 
      // Put terminal message back in problem tuple space 
      status = cnf_tsput(tsd, tpname, (char *)recdPtr, tplength); 
      // Set length of entry 
      tplength = sizeof(int); 
      // Set name of entry to host 
      sprintf(tpname,"%s", host); 
      printf("Worker: Sending sum %d\n", sendSum); 
      // Put sum in result tuple space 
      status = cnf_tsput(res, tpname, (char *)sendPtr, tplength); 
      // Terminate worker 
      printf("Worker: Terminated\n"); 
      cnf_term(); 
    } 
    // Sleep 1 second 
    sleep(1); 
  } 
} 

 
To run the sum of first n integers distributed application: 
 

1. Make the executables by typing “make” and pressing the enter key. 
2. Run the application by typing “prun tupleSum1” and pressing the enter key. 

 
The screen output for the master terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
[c615111@owin ~/fpc04 ]>prun tupleSum1 
Master: Opening tuple spaces 
Master: Tuple spaces open complete 
Master: Processors 2 
Master: tplength = (4) 
Master: Putting 1...6 to problem tuple space 
Master: Putting 6 
Master: Putting 5 
Master: Putting 4 
Master: Putting 3 
Master: Putting 2 
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Master: Putting 1 
Master: Finished sending 1...6 to tuple space 
Master: Sending terminal signal 
Master: Finished sending terminal signal 
Master: Getting sub sums from result tuple space 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: Beginning to accumulate sum 
Worker: Took item 5 
Worker: Present subtotal is 5 
Worker: Took item 3 
Worker: Present subtotal is 8 
Worker: Took item 1 
Worker: Present subtotal is 9 
Master: Received 12 from saber 
Worker: Took item 7 
Worker: Received terminal signal 
Worker: Sending sum 9 
Worker: Terminated 
Master: Received 9 from owin 
Master: The sum total is: 21 
Master: The calculated sum is: 21 
Master: The workers gave the correct answer 
Master: Terminated 
[c615111@owin ~/fpc04 ]> 

 
The screen output for the worker terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
Worker: Tuple spaces open complete 
Worker: Beginning to accumulate sum 
Worker: Took item 6 
Worker: Present subtotal is 6 
Worker: Took item 4 
Worker: Present subtotal is 10 
Worker: Took item 2 
Worker: Present subtotal is 12 
Worker: Took item 7 
Worker: Received terminal signal 
Worker: Sending sum 12 
Worker: Terminated 

 
 

Matrix Multiplication 

 

Matrix multiplication, A ⋅ B = C, can be performed by a traditional C program using the 
following function: 
 
void multIntMats(int A[N][N], int B[N][N], int C[N][N]){ 
  int i=0, j=0, k=0; 
  for(i=0; i<N; i++){ 
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  for(j=0; j<N; j++){ 
  C[i][j] = 0; 
  for(k=0; k<N; k++) 
    C[i][j] += A[i][k]*B[k][j]; 
  } 
  } 
} 

 
The program uses nested loops to calculate the value of the elements in the C matrix by 
performing multiplications across each of the elements in each row of the A matrix with 
each of the elements in each column of the B matrix.  In other words, the value at 
position C[0][0] is calculated by adding the products across the first row of A with those 
of the first column B such that: 

∑
−

=

⋅=
1

0

]0][[]][0[]0][0[
n

k

kBkAC . 

And by the function above for an n × n matrix we have: 
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We can conclude that: 
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Or in terms of the multiplication of a vector by a matrix for the ith rows of A and C: 

∑
−

=

⋅=
1

0

]][[][][
n

k

ii jkBkAjC ,  0 ≤ i ≤ n-1, 0 ≤ j ≤ n-1. 

A parallel program can perform matrix multiplication by having the master 
(tupleMat1Master.c) puts the whole matrix B as another single entry and each row of A 
into the tuple space as a single entry.  The worker (tupleMat1Worker.c) reads the whole 
B matrix and takes individual rows of A out of the problem tuple space.  Given an n-
length array Ai, which is a single row of A, the whole B matrix and an array Ci to store 
the result of the procedure, which is a row of C, the worker performs the following 
(simplified for illustration) procedure on the data: 
 
Begin procedure worker multiply 
Get B from problem tuple space 
While there are arrays in tuple space 
  Get an array from problem tuple space and put in Ai 
  For i=0..n-1 
    Set Ci[i] to 0 
    For j=0..n-1 
      Ci[i] += Ai[j] * B[j][i] 
  Put array Ci in result tuple space 
End procedure worker multiply 
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The procedure multiplies an array (or vector) by a matrix.  An example of this procedure 
is: 

 
 
 
 
 
 
 
 
 

 
The master will know which row to put the Ci results in because the tuple name (the i) 
will be the row number, which is also the tuple entry name.  The multiplication of A and 
B after the results were taken out of the result tuple space and assembled by the master 
would be: 
 
Notice that the multiplication produces the identity matrix.   The B matrices used in 
examples are intentionally set to be the inverse of their respective A matrices to 
demonstrate that the programs actually work.  The files for this application are located in 
the example05 directory.  The master program for the matrix multiplication is: 
 
#include <stdio.h> 
#include <sys/time.h> 
#include <sys/resource.h> 
 
#define N 6 
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main(){ 
 
  int i, j;             // Matrix indices 
  int tplength;         // Length of ts entry  
  int status;           // Return status for tuple operations 
  int P;                // Number of processors 
  int res;              // Result tuple space identifier 
  int tsd;              // Problem tuple space identifier 
  int n;                // Counter 
  int Ai[N];            // Row from A to send to worker 
  int Ci[N];            // Row from C to get from worker 
  char host[128];       // Host machine name 
  char tpname[20];      // Identifier of ts entry 
 
  // The A matrix to break up into arrays 
  // and send to workers 
  int A[N][N] = {{1,0,1,0,0,0}, 
                 {0,1,0,1,0,0}, 
                 {1,0,1,0,1,0}, 
                 {0,1,0,1,0,1}, 
                 {0,0,1,0,1,0}, 
                 {0,0,0,1,0,1}}; 
  // The B matrix to send to workers 
  int B[N][N] = {{0,0,1,0,-1,0}, 
                 {0,0,0,1,0,-1}, 
                 {1,0,-1,0,1,0}, 
                 {0,1,0,-1,0,1}, 
                 {-1,0,1,0,0,0}, 
                 {0,-1,0,1,0,0}}; 
  // The C matrix built from arrays 
  // received from workers 
  int C[N][N]; 
 
  printf("Master: started\n"); 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Master: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem",0); 
  // Open result tuple space 
  res = cnf_open("result",0); 
  printf("Master: Tuple spaces open complete\n"); 
 
  // Get number of processors 
  P = cnf_getP(); // Get number of processors 
  printf("Master: Processors %d\n", P); 
 
  // Print matrix A and B 
  printf("Master: Matrix A\n"); 
  for(i=0; i<N; i++){ 
  for(j=0; j<N; j++){ 
  printf(" %d", A[i][j]); 
  } 
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  printf("\n"); 
  } 
  printf("Master: Matrix B\n"); 
  for(i=0; i<N; i++){ 
    for(j=0; j<N; j++){ 
      printf(" %d", B[i][j]); 
    } 
    printf("\n"); 
  } 
 
  printf("Master: Starting C = A . B\n"); 
 
  // Put B matrix in ts 
  // Set length of send entry 
  tplength = N*N*sizeof(int); 
  // Set name of entry to B 
  sprintf(tpname,"B",0); 
  printf("Master: Putting Length %d Name %s\n", tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, B, tplength); 
 
  // Put A matrix in ts 
  // Set length of send entry 
  tplength = N*sizeof(int); 
  printf("tplength =  %d\n", tplength); 
 
  // Ready to build Ai row 
  for (i = 0; i < N; i++){ 
    // Set the rows name to row index 
    sprintf(tpname,"A%d",i); 
    printf("Master: Putting item %s ", tpname); 
    // Put a row from A matrix in ituple_A array 
    for (j = 0; j < N; j++){ 
      Ai[j] = A[i][j]; 
      printf("%d ", Ai[j]); 
    } 
    printf("\n"); 
    // Put entry in tuple space 
    status = cnf_tsput(tsd, tpname, Ai, tplength); 
  } 
 
  // Build C matrix from workers' results 
  for(n=0; n<N; n++){ 
    // Set name to any 
    strcpy(tpname,"*"); 
    // Read result from result tuple space 
    tplength = cnf_tsget(res, tpname, Ci, 0); 
    printf("Master: Received %s\n", tpname); 
    // Set received row to tpname 
    i = atoi(tpname); 
    // Add this array to C 
    for (j=0; j<N; j++) { 
      C[i][j] = Ci[j]; 
    } 
  } 
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  // Print the C matrix from workers 
  printf("Master: Matrix C\n"); 
  for(i=0; i<N; i++){ 
    for(j=0; j<N; j++){ 
      printf(" %d", C[i][j]); 
    } 
    printf("\n"); 
  } 
 
  // Insert –2 tuple as termination signal 
  // Set length of send entry 
  printf("Master: Putting terminal signal\n"); 
  tplength = sizeof(int); 
  Ai[0]  = -2; 
  sprintf(tpname, "A%d",N); 
  status = cnf_tsput(tsd, tpname, Ai, tplength); 
 
  // Terminate master 
  printf("Master: Terminated\n"); 
  cnf_term(); 
} 

 
The following is the tuple space matrix multiplication worker program: 
 
#include <stdio.h> 
#include <sys/time.h> 
#include <sys/resource.h> 
 
#define N 6 
 
main(){ 
 
  int tsd;              // Problem tuple space identifier 
  int res;              // Result tuple space identifier 
  int i, j;             // Matrix indices 
  int n;                // Counter 
  int status;           // Return status for tuple operations 
  int tplength;         // Length of ts entry 
  int Ai[N];            // Row from A to get from master 
  int Ci[N];            // Column from C to send to master 
  int B[N][N];          // B matrix received from master 
  char host[128];       // Host machine name 
  char tpname[20];      // Identifier of ts entry 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Worker: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem",0); 
  // Open result tuple space 
  res = cnf_open("result",0); 
  printf("Worker: Tuple spaces open complete\n"); 
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  // Set name to B 
  strcpy(tpname,"B"); 
  // Read B matrix from problem tuple space 
  status = cnf_tsread(tsd, tpname, B, 0);  
  tplength = (N*N)*sizeof(double); 
 
  printf("Worker: Matrix B\n"); 
  for(i=0; i<N; i++){ 
    for(j=0; j<N; j++){ 
      printf(" %d", B[i][j]); 
    } 
    printf("\n"); 
  } 
 
  // Loop forever to get work 
  while(1){ 
    // Set name to any 
    strcpy(tpname,"A*"); 
    // Read problem from problem tuple space 
    tplength = cnf_tsget(tsd, tpname, Ai, 0); 
    printf("Worker: Taking item %s", tpname); 
 
    // Normal receive 
    if(tplength > 0){ 
      printf("\n"); 
      // Check for the application termination signal 
      if (Ai[0] < -1){ 
        // Replace the terminal signal in problem ts 
        status = cnf_tsput(tsd, tpname, Ai, tplength); 
        printf("Worker: Terminated s\n"); 
        cnf_term(); 
      } 
 
      for(i=0; i<N; i++) 
        printf(" %d", Ai[i]); 
      printf("\n"); 
 
      // Perform multiplication on array and matrix 
      for(i=0; i<N; i++){ 
        Ci[i] = 0; 
        for(j=0; j<N; j++) 
          Ci[i] += Ai[j]*B[j][i]; 
      } 
 
      // Get row number  
      i = atoi(&tpname[1]); 
 
      // Print the result array 
      printf("Worker : Array C%s", tpname); 
      for(n=0; n<N; n++) 
        printf(" %d", Ci[n]); 
      printf("\n"); 
 
      // Set name to row number 
      sprintf(tpname,"%d",i); 
      // Put the result in the result tuple space 
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      status = cnf_tsput(res, tpname, Ci, tplength); 
      sleep(1); 
    } 
 
    // Else a zero length tuple was received 
    else{ 
      printf("Worker: Error-received zero length tuple"); 
      printf("Worker: Terminated\n"); 
      cnf_term(); 
    } 
  } 
} 

 
To run the matrix multiplication distributed application: 
 

1. Make the executables by typing “make” and pressing the enter key. 
2. Run the application by typing “prun tupleMat1” and pressing the enter key. 

 
The screen output for the master terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
[c615111@owin ~/fpc05 ]>prun tupleMat1 
Master: Tuple spaces open complete 
Master: Processors 2 
Master: Matrix A 
 1 0 1 0 0 0 
 0 1 0 1 0 0 
 1 0 1 0 1 0 
 0 1 0 1 0 1 
 0 0 1 0 1 0 
 0 0 0 1 0 1 
Master: Matrix B 
 0 0 1 0 -1 0 
 0 0 0 1 0 -1 
 1 0 -1 0 1 0 
 0 1 0 -1 0 1 
 -1 0 1 0 0 0 
 0 -1 0 1 0 0 
Master: Starting C = A . B 
Master: Putting Length 144 Name B 
Master: tplength =  24 
Master: Putting item A0 1 0 1 0 0 0 
Master: Putting item A1 0 1 0 1 0 0 
Master: Putting item A2 1 0 1 0 1 0 
Master: Putting item A3 0 1 0 1 0 1 
Master: Putting item A4 0 0 1 0 1 0 
Master: Putting item A5 0 0 0 1 0 1 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: Matrix B 
 0 0 1 0 -1 0 
 0 0 0 1 0 -1 
Master: Received 0 
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 1 0 -1 0 1 0 
 0 1 0 -1 0 1 
 -1 0 1 0 0 0 
 0 -1 0 1 0 0 
Worker: Taking item A1 
 0 1 0 1 0 0 
Worker : Array CA1 0 1 0 0 0 0 
Master: Received 1 
Worker: Taking item A2 
 1 0 1 0 1 0 
Worker : Array CA2 0 0 1 0 0 0 
Master: Received 2 
Master: Received 3 
Worker: Taking item A4 
 0 0 1 0 1 0 
Worker : Array CA4 0 0 0 0 1 0 
Master: Received 4 
Master: Received 5 
Master: Matrix C 
 1 0 0 0 0 0 
 0 1 0 0 0 0 
 0 0 1 0 0 0 
 0 0 0 1 0 0 
 0 0 0 0 1 0 
 0 0 0 0 0 1 
Master: Putting terminal signal 
Master: Terminated 
Worker: Taking item A6 
Worker: Terminated 
[c615111@owin ~/fpc05 ]> 

 
The screen output for the worker terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: Matrix B 
 0 0 1 0 -1 0 
 0 0 0 1 0 -1 
 1 0 -1 0 1 0 
 0 1 0 -1 0 1 
 -1 0 1 0 0 0 
 0 -1 0 1 0 0 
Worker: Taking item A0 
 1 0 1 0 0 0 
Worker : Array CA0 1 0 0 0 0 0 
Worker: Taking item A3 
 0 1 0 1 0 1 
Worker : Array CA3 0 0 0 1 0 0 
Worker: Taking item A5 
 0 0 0 1 0 1 
Worker : Array CA5 0 0 0 0 0 1 
Worker: Taking item A6 
Worker: Terminated 
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Work Distribution by Chunking 
 

Finding the Sum of the First n Integers with Chunking 

 
The following is the tuple space “sum of n integers” master program implemented by 
sending work in chunks: 
 
#include <stdio.h> 
#include <sys/resource.h> 
 
#define N 32 
 
main(){ 
 
  int P;                    // Number of processors 
  int chunk_size;           // Chunk size 
  int remainder;            // Remainder of numbers to be sent 
  int i;                    // Counter index 
  int job;                  // Job number 
  int status;               // Return status for tuple operations 
  int res;                  // Result tuple space identifier 
  int tsd;                  // Problem tuple space identifier 
  int *sendArr = 0;         // Number sent to problem ts 
  int sendNum;              // Number sent to worker in sendArr 
  int recdSum = 0;          // Subsum recieved from result ts 
  int *recdPtr = &recdSum;  // Pointer to recdSum 
  int calcSum = 0;          // Calculated sum 
  int sumTotal = 0;         // Sum total of all subsums 
  int tplength;             // Length of ts entry 
  char tpname[20];          // Identifier of ts entry 
  char host[128];           // Host machine name 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Master: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem", 0); 
  // Open result tuple space 
  res = cnf_open("result", 0); 
  printf("Master: Tuple spaces open complete\n"); 
 
  // Get number of processors 
  P = cnf_getP(); 
  printf("Master: Processors %d\n", P); 
  // Get chunk size 
  chunk_size = cnf_getf(); 
  printf("Master: Chunk size %d\n", chunk_size); 
 
  // Put chunk size in ts 
  // Set length of entry 
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  tplength = sizeof(int); 
  // Set name of entry 
  strcpy(tpname, "chunk_size"); 
  // Put entry in ts 
  status = cnf_tsput(tsd, tpname, &chunk_size, tplength); 
  printf("Master: Sent chunk size\n"); 
 
  // Send integers to problem tuple space 
  // Set length of entry to chunk_size + 1 integers 
  tplength = (chunk_size+1) * sizeof(int); 
  printf("Master: tplength = %d\n", tplength); 
 
  // Prepare and send integer arrays into tuple space 
  printf("Master: Putting 1...%d to problem tuple space\n", N); 
  if((sendArr = (int *) malloc(tplength)) == NULL) 
    exit(1); 
  // Loop until all numbers are sent to workers 
  remainder = N; 
  job = 0; 
  sendNum = 1; 
  while (remainder > 0) { 
    if (remainder < chunk_size) 
      chunk_size = remainder; 
    remainder = remainder - chunk_size; 
    job++; 
    // Set name of entry to job number 
    sprintf(tpname,"A%d", job); 
    // Put chunk_size in index zero 
    sendArr[0] = chunk_size; 
    printf("Master: Putting %s Size %d\n ", tpname, sendArr[0]); 
    // Put chunk_size integers in array 
    for(i=1; i<=chunk_size; i++, sendNum){ 
      sendArr[i] = sendNum++; 
      printf(" %d", sendArr[i]); 
    } 
    printf("\n"); 
    // Put entry in problem tuple space 
    status = cnf_tsput(tsd, tpname, sendArr, tplength); 
    // Decrement number to set entry value 
  } 
  printf("Master: Finished sending 1...%d to tuple space\n", N); 
 
  // Receive sub sums from result tuple space 
  // Set index to 1 
  i = 1; 
  printf("Master: Getting sub sums from result tuple space\n"); 
  while (job-- > 0){ 
    // Set name of entry to any 
    strcpy(tpname,"*"); 
    // Get entry from result tuple space 
    tplength = cnf_tsget(res, tpname, (char *)recdPtr, 0); 
    printf("Master: Recieved %d from %s\n", recdSum, tpname); 
    // Add result to total 
    sumTotal += recdSum; 
    // Increment counter 
  } 
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  printf("Master: The sum total is: %d\n", sumTotal); 
 
  // Calculate correct answer with math formula 
  calcSum = (N*(N+1))/2; 
  printf ("Master: The formula calculated sum is: %d\n", calcSum); 
 
  // Compare results 
  if(calcSum == sumTotal) 
    printf("Master: The workers gave the correct answer\n"); 
  else 
    printf("Master: The workers gave an incorrect answer\n"); 
 
  // Insert negative integer tuple as termination signal 
  printf("Master: Sending terminal signal\n"); 
  // Set length of entry 
  tplength = (1) * sizeof(int); 
  // Set entry value 
  sendArr[0] = -1; 
  // Set entry name 
  sprintf(tpname, "A%d", N+1); 
  // Send entry to tuple space 
  status = cnf_tsput(tsd, tpname, sendArr, tplength); 
  printf("Master: Finished sending terminal signal\n"); 
 
  // Terminate program 
  printf("Master: Terminated\n"); 
  cnf_term(); 
} 

 
The following is the tuple space “sum of n integers” worker program implemented by 
receiving work in chunks: 
 
#include <stdio.h> 
#include <sys/resource.h> 
 
main(){ 
 
  // Variable declarations 
  int tsd;                  // Problem tuple space identifier 
  int res;                  // Result tuple space identifier 
  int *recdPtr;             // Pointer to recd array 
  int sendSum = 0;          // Sum of numbers received 
  int *sendPtr = &sendSum;  // Pointer to sendSum 
  int status;               // Return status for tuple operations 
  int tplength;             // Length of ts entry 
  int chunk_size;           // Size of recdPtr 
  int i;                    // Index counter 
  char tpname[20];          // Identifier of ts entry 
  char host[128];           // Host machine name 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
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  printf("Worker: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem", 0); 
  // Open result tuple space 
  res = cnf_open("result", 0); 
  printf("Worker: Tuple spaces open complete\n"); 
  
  // Get the chunk size from ts 
  // Set name of entry 
  strcpy(tpname, "chunk_size"); 
  // Read chunk size 
  status = cnf_tsread(tsd, tpname, &chunk_size, 0); 
  printf("Worker: Chunk size %d\n", chunk_size); 
 
  // Set length of tuple space entry 
  tplength = (chunk_size+1) * sizeof(int); 
  // Allocate memory for entry 
  if((recdPtr = (int *)malloc(tplength)) == NULL)  
    exit(-1); 
  printf("Worker: array size %d\n", tplength);  
 
  // Loop forever to accumulate sendSum 
  printf("Worker: Begining to accumulate sum\n"); 
  while(1){   
    sendSum = 0; 
    // Set name to any 
    strcpy(tpname, "A*"); 
    // Get problem from tuple space 
    tplength = cnf_tsget(tsd, tpname, recdPtr, 0); 
    // Get chunk_size from index zero 
    chunk_size = (int) recdPtr[0]; 
    printf("Worker: Took item %s length %d\n ", tpname, chunk_size); 
    // If normal receive 
    if(chunk_size > 0){ 
      // Get number of array elements 
      // Add to sendSum 
      for(i=1; i<=chunk_size; i++){ 
        sendSum += recdPtr[i]; 
        printf(" %d", recdPtr[i]); 
      } 
      // Set length of entry 
      tplength = sizeof(int); 
      // Set name of entry to host 
      strcpy(tpname, host); 
      printf("\nWorker: Sending sum %d\n", sendSum); 
      // Put sum in result tuple space 
      status = cnf_tsput(res, tpname, sendPtr, tplength); 
    } 
    // Else terminate worker 
    else{ 
      printf("Worker: Recieved terminal signal\n"); 
      // Put terminal message back in problem tuple space 
      status = cnf_tsput(tsd, tpname, recdPtr, tplength); 
      // Terminate worker 
      printf("Worker: Terminated\n"); 
      cnf_term(); 
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    } 
    // Sleep 1 second 
    sleep(1); 
  } 
} 

 
To run the sum of first n integers distributed application with chunking: 
 

1. Make the executables by typing “make” and pressing the enter key. 
2. Run the application by typing “prun tupleSum2” and pressing the enter key. 

 
The screen output for the master terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
[c615111@owin ~/fpc06 ]>prun tupleSum2 
Master: Opening tuple spaces 
Master: Tuple spaces open complete 
Master: Processors 2 
Master: Chunk size 4 
Master: Sent chunk size 
Master: tplength = 20 
Master: Putting 1...32 to problem tuple space 
Master: Putting A1 Size 4 
  1 2 3 4 
Master: Putting A2 Size 4 
  5 6 7 8 
Master: Putting A3 Size 4 
  9 10 11 12 
Master: Putting A4 Size 4 
  13 14 15 16 
Master: Putting A5 Size 4 
  17 18 19 20 
Master: Putting A6 Size 4 
  21 22 23 24 
Master: Putting A7 Size 4 
  25 26 27 28 
Master: Putting A8 Size 4 
  29 30 31 32 
Master: Finished sending 1...32 to tuple space 
Master: Getting sub sums from result tuple space 
Master: Recieved 10 from saber 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: Chunk size 4 
Worker: array size 20 
Worker: Begining to accumulate sum 
Worker: Took item A2 length 4 
  5 6 7 8 
Worker: Sending sum 26 
Master: Recieved 26 from owin 
Master: Recieved 42 from saber 
Worker: Took item A4 length 4 
  13 14 15 16 
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Worker: Sending sum 58 
Master: Recieved 58 from owin 
Master: Recieved 74 from saber 
Worker: Took item A6 length 4 
  21 22 23 24 
Worker: Sending sum 90 
Master: Recieved 90 from owin 
Master: Recieved 106 from saber 
Worker: Took item A8 length 4 
  29 30 31 32 
Worker: Sending sum 122 
Master: Recieved 122 from owin 
Master: The sum total is: 528 
Master: The formula calculated sum is: 528 
Master: The workers gave the correct answer 
Master: Sending terminal signal 
Master: Finished sending terminal signal 
Master: Terminated 
Worker: Took item A33 length -1 
Worker: Recieved terminal signal 
Worker: Terminated 
[c615111@owin ~/fpc06 ]> 

 
The screen output for the worker terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: Chunk size 4 
Worker: array size 20 
Worker: Begining to accumulate sum 
Worker: Took item A1 length 4 
  1 2 3 4 
Worker: Sending sum 10 
Worker: Took item A3 length 4 
  9 10 11 12 
Worker: Sending sum 42 
Worker: Took item A5 length 4 
  17 18 19 20 
Worker: Sending sum 74 
Worker: Took item A7 length 4 
  25 26 27 28 
Worker: Sending sum 106 
Worker: Took item A33 length -1 
 Worker: Recieved terminal signal 
Worker: Terminated 

 
 

Matrix Multiplication with Chunking 
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The following is the tuple space “matrix multiplication” master program implemented by 
sending work in chunks: 
 
#include <stdio.h> 
#include <sys/time.h> 
#include <sys/resource.h> 
 
#include "matrix.h" 
 
// The A matrix to break up into arrays 
// and send to workers 
double A[N][N]; 
// The B matrix 
double B[N][N]; 
// The resulting C matrix 
double C[N][N]; 
 

A

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

= B

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 -1

0 0 0 0 0 0 0 1 -1 0

0 0 0 0 0 0 1 -1 0 0

0 0 0 0 0 1 -1 0 0 0

0 0 0 0 1 -1 0 0 0 0

0 0 0 1 -1 0 0 0 0 0

0 0 1 -1 0 0 0 0 0 0

0 1 -1 0 0 0 0 0 0 0

1 -1 0 0 0 0 0 0 0 0

=

C A B. C

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

= B A
1
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main(){ 
 
  int processors;     // Number of processors 
  int chunk_size;     // Chunk size 
  int remaining;      // Remaining arrays of work 
  int i, j;           // Matrix indices 
  int matrix_row;     // Index of matrix row 
  int array_pos;      // Array position in rows array 
  int status;         // Return status for tuple operations 
  int res;            // Result tuple space identifier 
  int tsd;            // Problem tuple space identifier 
  double *rows;       // Rows from A to send to worker 
  double worker_time; // Sum of times returned by workers 
  double total_time;  // Total application run time 
  int tplength;       // Length of ts entry 
  char tpname[20];    // Identifier of ts entry 
  char host[128];     // Host machine name 
 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Get time stamp 
  total_time = wall_clock(); 
 
  // Open tuple spaces 
  printf("Master: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem",0); 
  // Open result tuple space 
  res = cnf_open("result",0); 
  printf("Master: Tuple spaces open complete\n"); 
 
  // Get number of processors 
  processors = cnf_getP(); 
  printf("Master: Processors %d\n", processors); 
  // Get chunk size 
  chunk_size = cnf_getf(); 
  printf("Master: Chunk size %d\n", chunk_size); 
 
  printf("Master: Starting C = A . B\n"); 
  printf("  on %d x %d matrices\n", N, N); 
 
  // Create and print matrix B 
  makeDblInv(B); 
  if(N <= 36) 
    printDblMat(B, 'B'); 
 
  // Put B matrix in ts 
  // Set size of B matrix 
  tplength = N*N*sizeof(double); 
  // Set name of entry to B 
  sprintf(tpname,"B",0); 
  printf("Master: Putting B Length(%d) Name(%s)\n", 
         tplength, tpname); 
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  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, B, tplength); 
 
  // Create and print matrix A 
  makeDblMat(A); 
  if(N <= 36) 
    printDblMat(A, 'A');   
 
  // Put chunk_size of A in ts 
  // Set size of int 
  tplength = sizeof(int); 
  // Set name of entry to chunk_size 
  sprintf(tpname,"chunk_size",0); 
  printf("Master: Putting chunk_size Length(%d) Name(%s)\n", 
          tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, &chunk_size, tplength); 
 
  // Put chunks of A in ts 
  // Get Ai tuple size 
  tplength = (2+chunk_size*N) * sizeof(double); 
  printf("Master: Ai tplength = (%d)\n", tplength); 
 
  // Prepare integer array rows for tuple space exchange 
  if((rows = (double *) malloc(tplength)) == NULL) 
    exit(1); 
  printf("Master: Putting A in problem tuple space\n"); 
 
  // Build Ai array rows to send to ts 
  // Set remaining to total number of rows 
  remaining = N; 
  // Set start matrix row to zero 
  matrix_row = 0; 
  // Loop until all numbers are sent to workers 
  while (remaining > 0) { 
    // If remaining rows is less than chunk size 
    // set number of rows sent to remaining rows 
    if (remaining < chunk_size) 
      chunk_size = remaining; 
    // Subtract rows being sent from remaining rows 
    remaining = remaining - chunk_size; 
    printf("Master: chunk_size(%d) remaining(%d) \n", 
            chunk_size, remaining); 
    // Put chunk_size in first index 
    rows[0] = chunk_size; 
    // Set rows array position to 2 
    // Second position (1) is reserved for 
    // time returned by worker 
    array_pos = 2; 
    // Put rows of A matrix in rows array 
    for (i=0; i<chunk_size; i++){ 
      for (j=0; j<N; j++){ 
        rows[array_pos] = A[matrix_row+i][j]; 
        if(N <= 36) 
          printf(" %g", rows[array_pos]); 
        array_pos++; 
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      } 
      if(N <= 36) 
        printf("\n"); 
    } 
    // Set entry name to beginning Ai-row 
    sprintf(tpname,"A%d",matrix_row); 
    status = cnf_tsput(tsd, tpname, rows, tplength); 
    matrix_row += chunk_size; 
  } 
 
  // Get the result Ci from ts and assemble 
  // Set received rows to zero 
  remaining = N; 
  // Initialize worker time 
  worker_time = 0; 
  // Loop until all rows are recieved 
  while(remaining > 0){ 
    // Set entry name 
    strcpy(tpname,"*"); 
    // Get entry from result tuple space 
    tplength = cnf_tsget(res, tpname, rows, 0); 
    // Get number rows in this chunk from last index 
    chunk_size = rows[0]; 
    // Get time returned by worker 
    worker_time += rows[1]; 
    // Convert beginning row of entry to an integer 
    matrix_row = atoi(tpname); 
    printf("Master: Recieved %s Size %d\n", tpname, chunk_size); 
    // Set the position in the array to 2 
    array_pos = 2; 
 
    // Assemble the result matrix C 
    // Loop through recieved rows 
    printf("Master: Recieved\n"); 
    for (i= 0; i<chunk_size; i++){ 
      // Increment rows recieved by decrementing remaining 
      remaining--; 
      // Loop through row and array elements 
      for (j=0; j<N; j++){ 
        C[matrix_row][j] = rows[array_pos]; 
        if(N <= 36) 
          printf(" %g", C[matrix_row][j]); 
        // Increment array position 
        array_pos++; 
      } 
      if(N <= 36) 
        printf("\n"); 
      // Increment row position 
      matrix_row++; 
    } 
  } 
 
  // Resolve total time 
  total_time = wall_clock() - total_time; 
  printf("Master: The multiplication took %g seconds total time\n", 
         (total_time/1000000.0)); 
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  // Resolve worker time 
  printf("Master: The workers used %g seconds of processor time\n", 
         (worker_time/1000000.0)); 
 
  // Check and print the C matrix 
  if(N <= 36) 
    printDblMat(C, 'C'); 
  checkDblIdenMat(C, 'C'); 
 
  // Insert termination signal 
  // Set length of entry 
  tplength = sizeof(double); 
  // Set entry value 
  i  = -1; 
  // Set entry name 
  strcpy(tpname, "A-term"); 
  // Send entry to tuple space 
  status = cnf_tsput(tsd, tpname, &i, tplength); 
 
  // Free memory for rows array 
  free(rows); 
 
  // Terminate program 
  printf("Master: Terminated\n"); 
  cnf_term(); 
} 

 
The following is the tuple space “matrix multiplication” worker program implemented by 
sending work in chunks: 
 
#include <stdio.h> 
#include <sys/time.h> 
#include <sys/resource.h> 
 
#include "matrix.h" 
 
double B[N][N];   // B matrix 
double Ai[N];     // N length row of A  
 
main(){ 
 
  int chunk_size;     // Chunk size 
  int remaining;      // Remaining arrays of work 
  int i, j;           // Matrix indices 
  int n;              // Counter for rows in chunk 
  int matrix_row;     // Index of matrix row 
  int array_get;      // Get array position in rows array 
  int array_put;      // Put array position in rows array 
  int status;         // Return status for tuple operations 
  int res;            // Result tuple space identifier 
  int tsd;            // Problem tuple space identifier 
  double *rows;       // Rows from A to send to worker 
  double worker_time; // Time to return to master 
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  int tplength;       // Length of ts entry 
  char tpname[20];    // Identifier of ts entry 
  char host[128];     // Host machine name 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Worker: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem", 0); 
  // Open result tuple space 
  res = cnf_open("result", 0); 
  printf("Worker: Tuple spaces open complete\n"); 
 
  // Set tpname to B 
  strcpy(tpname,"B"); 
  // Read matrix B from tuple space 
  status = cnf_tsread(tsd, tpname, B, 0); 
 
  // Print matrix B 
  if(N <= 36) 
    printDblMat(B, 'B'); 
 
  // Get chunk_size from master 
  // Set tpname to chunk_size 
  strcpy(tpname,"chunk_size"); 
  // Read chunk_size from tuple space 
  status = cnf_tsread(tsd, tpname, &chunk_size, 0); 
 
  // Prepare integer array for tuple space exchanges 
  tplength = (1+chunk_size*N)*sizeof(double); 
  if ((rows = (double*)malloc(tplength)) == NULL) 
    exit(-1); 
 
  // Loop until terminal signal is recieved 
  while(1){ 
    // Set entry name 
    strcpy(tpname,"A*"); 
    // Set length of entry 
    tplength = cnf_tsget(tsd, tpname, rows, 0); 
 
    // Normal recieve 
    if(tplength > 0){ 
      // Check termination signal 
      if (!strcmp(tpname, "A-term")){ 
        printf("Worker: Recieved the terminal signal\n"); 
        // Replace the terminal signal in problem ts 
        status = cnf_tsput(tsd, tpname, rows, tplength); 
        // Free memory for rows 
        free(rows); 
        // Terminate worker 
        printf("Worker: Terminated\n"); 
        cnf_term(); 
      } 
      // Get number rows in this chunk from last index 
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      chunk_size = rows[0]; 
      // Convert beginning row of entry to an integer 
      matrix_row = atoi(&tpname[1]); 
      printf("Worker: chunk_size %d matrix_row %d\n", 
             chunk_size, matrix_row); 
 
      // Set rows array put position to 2 
      array_put = 2; 
      // Set rows array get position to 2 
      array_get = 2; 
 
      // Get beginning worker time 
      worker_time = wall_clock(); 
 
      // For each row in chunk_size 
      for(n=0; n<chunk_size; n++){ 
        // Copy a row from rows to Ai 
        // and print to screen 
        if(N <= 36) 
          printf("Worker: Recieved\n"); 
        for(i=0; i<N; i++){ 
          Ai[i] = rows[array_get]; 
          rows[array_get++] = 0; 
          if(N <= 36) 
            printf(" %g", Ai[i]); 
        } 
        if(N <= 36) 
          printf("\n"); 
        // Multiply rows in place with B 
        // For each column of B 
        if(N <= 100) 
          printf("Worker: Calculated array C%s+%d\n", tpname, n); 
        for (i=0; i<N; i++){ 
          // For each element in Ai and each 
          // element in this column of B multiply 
          // producing an element in rows 
          for (j=0; j<N; j++){ 
            rows[array_put] += Ai[j] * B[j][i]; 
          } 
          if(N <= 36) 
            printf(" %g", rows[array_put]); 
          // Increment to next position in rows 
          array_put++; 
        } 
        if(N <= 36) 
          printf("\n"); 
      } 
 
      // Put worker time in rows array 
      rows[1] = wall_clock() - worker_time; 
      // Set length of entry 
      tplength = (2+chunk_size*N)*sizeof(double); 
      // Set tpname to first row number in rows 
      sprintf(tpname,"%d", matrix_row); 
      printf("Worker: Putting %s\n",tpname); 
      // Put the result in the result tuple space 
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      status = cnf_tsput(res, tpname, rows, tplength); 
      if(N <= 36) 
        sleep(1); 
    } 
 
    else{ 
      printf("Worker: Recieved a zero length entry\n"); 
      // Free memory for rows 
      free(rows); 
      // Terminate worker 
      printf("Worker Terminated\n"); 
      cnf_term(); 
    } 
  } 
} 

 
To run the matrix multiplication distributed application with chunk size of 4 and N = 10 
(a 10 x 10 matrix): 
 

1. Set the factor value in the csl file to 4 (as shown below) 
2. Make the executables by typing “make SIZE=10” and pressing the enter key. 
3. Run the application by typing “prun tupleSum2” and pressing the enter key. 

 
configuration: tupleMat2; 
 
m: master = tupleMat2Master 
        (factor = 4 
        threshold = 1 
        debug = 0 
        ) 
   -> f: problem 
        (type = TS) 
   -> m: worker = tupleMat2Worker 
        (type = slave) 
   -> f: result 
        (type = TS) 
   -> m: master; 

 
The screen output for the master terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
[c615111@owin ~/fpc07new ]>prun tupleMat2 
Master: Opening tuple spaces 
Master: Tuple spaces open complete 
Master: Processors 2 
Master: Chunk size 4 
Master: Starting C = A . B 
  on 10 x 10 matrices 
The B double matrix 
 0 0 0 0 0 0 0 0 0 1 
 0 0 0 0 0 0 0 0 1 -1 
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 0 0 0 0 0 0 0 1 -1 0 
 0 0 0 0 0 0 1 -1 0 0 
 0 0 0 0 0 1 -1 0 0 0 
 0 0 0 0 1 -1 0 0 0 0 
 0 0 0 1 -1 0 0 0 0 0 
 0 0 1 -1 0 0 0 0 0 0 
 0 1 -1 0 0 0 0 0 0 0 
 1 -1 0 0 0 0 0 0 0 0 
Master: Putting B Length(800) Name(B) 
The A double matrix 
 1 1 1 1 1 1 1 1 1 1 
 1 1 1 1 1 1 1 1 1 0 
 1 1 1 1 1 1 1 1 0 0 
 1 1 1 1 1 1 1 0 0 0 
 1 1 1 1 1 1 0 0 0 0 
 1 1 1 1 1 0 0 0 0 0 
 1 1 1 1 0 0 0 0 0 0 
 1 1 1 0 0 0 0 0 0 0 
 1 1 0 0 0 0 0 0 0 0 
 1 0 0 0 0 0 0 0 0 0 
Master: Putting chunk_size Length(4) Name(chunk_size) 
Master: Ai tplength = (336) 
Master: Putting A in problem tuple space 
Master: chunk_size(4) remaining(6) 
 1 1 1 1 1 1 1 1 1 1 
 1 1 1 1 1 1 1 1 1 0 
 1 1 1 1 1 1 1 1 0 0 
 1 1 1 1 1 1 1 0 0 0 
Master: chunk_size(4) remaining(2) 
 1 1 1 1 1 1 0 0 0 0 
 1 1 1 1 1 0 0 0 0 0 
 1 1 1 1 0 0 0 0 0 0 
 1 1 1 0 0 0 0 0 0 0 
Master: chunk_size(2) remaining(0) 
 1 1 0 0 0 0 0 0 0 0 
 1 0 0 0 0 0 0 0 0 0 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
The B double matrix 
 0 0 0 0 0 0 0 0 0 1 
 0 0 0 0 0 0 0 0 1 -1 
 0 0 0 0 0 0 0 1 -1 0 
 0 0 0 0 0 0 1 -1 0 0 
 0 0 0 0 0 1 -1 0 0 0 
 0 0 0 0 1 -1 0 0 0 0 
 0 0 0 1 -1 0 0 0 0 0 
 0 0 1 -1 0 0 0 0 0 0 
 0 1 -1 0 0 0 0 0 0 0 
 1 -1 0 0 0 0 0 0 0 0 
Worker: chunk_size 4 matrix_row 4 
Worker: Recieved 
 1 1 1 1 1 1 0 0 0 0 
Worker: Calculated array CA4+0 
 0 0 0 0 1 0 0 0 0 0 
Worker: Recieved 
 1 1 1 1 1 0 0 0 0 0 
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Worker: Calculated array CA4+1 
 0 0 0 0 0 1 0 0 0 0 
Worker: Recieved 
 1 1 1 1 0 0 0 0 0 0 
Worker: Calculated array CA4+2 
 0 0 0 0 0 0 1 0 0 0 
Worker: Recieved 
 1 1 1 0 0 0 0 0 0 0 
Worker: Calculated array CA4+3 
 0 0 0 0 0 0 0 1 0 0 
Worker: Putting 4 
Master: Recieved 4 Size 4 
Master: Recieved 
 0 0 0 0 1 0 0 0 0 0 
 0 0 0 0 0 1 0 0 0 0 
 0 0 0 0 0 0 1 0 0 0 
 0 0 0 0 0 0 0 1 0 0 
Master: Recieved 0 Size 4 
Master: Recieved 
 1 0 0 0 0 0 0 0 0 0 
 0 1 0 0 0 0 0 0 0 0 
 0 0 1 0 0 0 0 0 0 0 
 0 0 0 1 0 0 0 0 0 0 
Worker: chunk_size 2 matrix_row 8 
Worker: Recieved 
 1 1 0 0 0 0 0 0 0 0 
Worker: Calculated array CA8+0 
 0 0 0 0 0 0 0 0 1 0 
Worker: Recieved 
 1 0 0 0 0 0 0 0 0 0 
Worker: Calculated array CA8+1 
 0 0 0 0 0 0 0 0 0 1 
Worker: Putting 8 
Master: Recieved 8 Size 2 
Master: Recieved 
 0 0 0 0 0 0 0 0 1 0 
 0 0 0 0 0 0 0 0 0 1 
Master: The multiplication took 1.11439 seconds total time 
Master: The workers used 0.024033 seconds of processor time 
The C double matrix 
 1 0 0 0 0 0 0 0 0 0 
 0 1 0 0 0 0 0 0 0 0 
 0 0 1 0 0 0 0 0 0 0 
 0 0 0 1 0 0 0 0 0 0 
 0 0 0 0 1 0 0 0 0 0 
 0 0 0 0 0 1 0 0 0 0 
 0 0 0 0 0 0 1 0 0 0 
 0 0 0 0 0 0 0 1 0 0 
 0 0 0 0 0 0 0 0 1 0 
 0 0 0 0 0 0 0 0 0 1 
Master: C is Identity Matrix 
Master: Terminated 
Worker: Recieved the terminal signal 
Worker: Terminated 
== (tupleMat2) completed. Elapsed [2] Seconds. 
[c615111@owin ~/fpc07new ]> 
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The screen output for the worker terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
The B double matrix 
 0 0 0 0 0 0 0 0 0 1 
 0 0 0 0 0 0 0 0 1 -1 
 0 0 0 0 0 0 0 1 -1 0 
 0 0 0 0 0 0 1 -1 0 0 
 0 0 0 0 0 1 -1 0 0 0 
 0 0 0 0 1 -1 0 0 0 0 
 0 0 0 1 -1 0 0 0 0 0 
 0 0 1 -1 0 0 0 0 0 0 
 0 1 -1 0 0 0 0 0 0 0 
 1 -1 0 0 0 0 0 0 0 0 
Worker: chunk_size 4 matrix_row 0 
Worker: Recieved 
 1 1 1 1 1 1 1 1 1 1 
Worker: Calculated array CA0+0 
 1 0 0 0 0 0 0 0 0 0 
Worker: Recieved 
 1 1 1 1 1 1 1 1 1 0 
Worker: Calculated array CA0+1 
 0 1 0 0 0 0 0 0 0 0 
Worker: Recieved 
 1 1 1 1 1 1 1 1 0 0 
Worker: Calculated array CA0+2 
 0 0 1 0 0 0 0 0 0 0 
Worker: Recieved 
 1 1 1 1 1 1 1 0 0 0 
Worker: Calculated array CA0+3 
 0 0 0 1 0 0 0 0 0 0 
Worker: Putting 0 
Worker: Recieved the terminal signal 
Worker: Terminated 

 
To run the matrix multiplication distributed application with chunk size of 200 and N = 
500 (a 500 x 500 matrix): 
 

1. Set the factor value in the csl file to 200 (as shown below) 
2. Make the executables by typing “make SIZE=500” and pressing the enter key. 
3. Run the application by typing “prun tupleMat2” and pressing the enter key. 

 
configuration: tupleMat2; 
 
m: master = tupleMat2Master 
        (factor = 200 
        threshold = 1 
        debug = 0 
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        ) 
   -> f: problem 
        (type = TS) 
   -> m: worker = tupleMat2Worker 
        (type = slave) 
   -> f: result 
        (type = TS) 
   -> m: master; 

 
The screen output for the master terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
[c615111@owin ~/fpc07new ]>prun tupleMat2 
Master: Opening tuple spaces 
CID starting program. path (bin/tupleMat2Worker) 
Master: Tuple spaces open complete 
Master: Processors 2 
Master: Chunk size 200 
Master: Starting C = A . B 
  on 500 x 500 matrices 
Master: Putting B Length(2000000) Name(B) 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Master: Putting chunk_size Length(4) Name(chunk_size) 
Master: Ai tplength = (800016) 
Master: Putting A in problem tuple space 
Master: chunk_size(200) remaining(300) 
Master: chunk_size(200) remaining(100) 
Worker: chunk_size 200 matrix_row 200 
Master: chunk_size(100) remaining(0) 
Worker: Putting 200 
Master: Recieved 0 Size 200 
Master: Recieved 
Master: Recieved 200 Size 200 
Master: Recieved 
Master: Recieved 400 Size 100 
Master: Recieved 
Master: The multiplication took 9.66808 seconds total time 
Master: The workers used 15.0322 seconds of processor time 
Master: C is Identity Matrix 
Worker: Recieved the terminal signal 
Master: Terminated 
Worker: Terminated 
== (tupleMat2) completed. Elapsed [10] Seconds. 
 [c615111@owin ~/fpc07new ]> 

 
The screen output for the worker terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: chunk_size 200 matrix_row 0 
Worker: Putting 0 
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Worker: chunk_size 100 matrix_row 400 
Worker: Putting 400 
Worker: Recieved the terminal signal 
Worker: Terminated 
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Optimized Programs 
 

Optimized Matrix Multiplication with Chunking 

 
The following is the tuple space “optimized matrix multiplication” master program 
implemented by sending work in chunks: 
 
#include <stdio.h> 
#include <sys/time.h> 
#include <sys/resource.h> 
 
// The A matrix to break up into arrays 
// and send to workers 
double A[N][N]; 
double B[N][N]; 
double C[N][N]; 
 
#include "matrix.h" 
 
 
// Main function 
main(){ 
 
  int processors;     // Number of processors 
  int chunk_size;     // Chunk size 
  int remaining;      // Remaining arrays of work 
  int i, j;           // Matrix indices 
  int matrix_row;     // Index of matrix row 
  int array_pos;      // Array position in rows array 
  int status;         // Return status for tuple operations 
  int res;            // Result tuple space identifier 
  int tsd;            // Problem tuple space identifier 
  double *rows;       // Rows from A to send to worker 
  double worker_time; // Sum of times returned by workers 
  double total_time;  // Total application run time 
  int tplength;       // Length of ts entry 
  char tpname[20];    // Identifier of ts entry 
  char host[128];     // Host machine name 
 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Get time stamp 
  total_time = wall_clock(); 
 
  // Open tuple spaces 
  printf("Master: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem",0); 
  // Open result tuple space 
  res = cnf_open("result",0); 
  printf("Master: Tuple spaces open complete\n"); 
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  // Get number of processors 
  processors = cnf_getP(); 
  printf("Master: Processors %d\n", processors); 
  // Get chunk size 
  chunk_size = cnf_getf(); 
  printf("Master: Chunk size %d\n",  
          chunk_size); 
 
  printf("Master: Starting C = A . B\n"); 
  printf("  on %d x %d matrices\n", N, N); 
 
  // Create and print matrix B 
  makeDblInv(B); 
  if(N <= 36) 
    printDblMat(B, 'B'); 
 
  // Put B matrix in ts 
  // Set size of B matrix 
  tplength = N*N*sizeof(double); 
  // Set name of entry to B 
  sprintf(tpname,"B",0); 
  printf("Master: Putting B Length %d Name %s\n", 
          tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, B, tplength); 
 
  // Create and print matrix A 
  makeDblMat(A); 
  if(N <= 36) 
    printDblMat(A, 'A'); 
 
  // Put chunk_size of A in ts 
  // Set size of int 
  tplength = sizeof(int); 
  // Set name of entry to chunk_size 
  sprintf(tpname,"chunk_size",0); 
  printf("Master: Putting chunk_size Length %d Name %s\n", 
          tplength, tpname); 
  // Put entry in tuple space 
  status = cnf_tsput(tsd, tpname, &chunk_size, tplength); 
 
  // Put chunks of A in ts 
  // Get Ai tuple size 
  tplength = (2+chunk_size*N) * sizeof(double); 
  printf("Master: Ai tplength = (%d)\n", tplength); 
 
  // Prepare integer array rows for tuple space exchange 
  if((rows = (double *) malloc(tplength)) == NULL) 
    exit(1); 
  printf("Master: Putting A in problem tuple space\n"); 
 
  // Build Ai array rows to send to ts 
  // Set remaining to total number of rows 
  remaining = N; 
  // Set start matrix row to zero 
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  matrix_row = 0; 
  // Loop until all numbers are sent to workers 
  while (remaining > 0) { 
    // If remaining rows is less than chunk size 
    // set number of rows sent to remaining rows 
    if (remaining < chunk_size) 
      chunk_size = remaining; 
    // Subtract rows being sent from remaining rows 
    remaining = remaining - chunk_size; 
    // Set rows array position to 2 
    // Second position (1) is reserved for 
    // time returned by worker 
    array_pos = 2; 
    // Put chunk_size in last index 
    rows[0] = chunk_size; 
    // Put rows of A matrix in rows array 
    for (i=0; i<chunk_size; i++){ 
      for (j=0; j<N; j++){ 
        rows[array_pos] = A[matrix_row+i][j]; 
        if(N <= 36) 
          printf(" %g", rows[array_pos]); 
        array_pos++; 
      } 
      if(N <= 36) 
        printf("\n"); 
    } 
    // Set entry name to beginning Ai-row 
    sprintf(tpname,"A%d",matrix_row); 
    printf("Master: Putting chunk_size %d matrix_row %s remaining %d\n", 
            chunk_size, tpname, remaining); 
    status = cnf_tsput(tsd, tpname, rows, tplength); 
    matrix_row += chunk_size; 
  } 
 
  printf("Master: All work has been sent\n"); 
 
 
  // Get the result Ci from ts and assemble 
  // Set received rows to N 
  remaining = N; 
  // Initialize worker time 
  worker_time = 0; 
  // Loop until all rows are recieved 
  while(remaining > 0){ 
    // Set entry name 
    strcpy(tpname,"*"); 
    // Get entry from result tuple space 
    tplength = cnf_tsget(res, tpname, rows, 0); 
    // Get number rows in this chunk from last index 
    chunk_size = rows[0]; 
    // Get time returned by worker 
    worker_time += rows[1]; 
    // Convert beginning row of entry to an integer 
    matrix_row = atoi(tpname); 
    printf("Master: Recieved chunk_sizs %d matrix_row %s\n",  
           chunk_size, tpname); 
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    // Set the position in the array to 2 
    array_pos = 2; 
 
    // Assemble the result matrix C 
    // Loop through recieved rows 
    if(N <= 36) 
      printf("Master: Recieved\n"); 
    for (i= 0; i<chunk_size; i++){ 
      // Increment rows recieved by decrementing remaining 
      remaining--; 
      // Loop through row and array elements 
      for (j=0; j<N; j++){ 
        C[matrix_row][j] = rows[array_pos]; 
        if(N <= 36) 
          printf(" %g", C[matrix_row][j]); 
        // Increment array position 
        array_pos++; 
      } 
      if(N <= 36) 
        printf("\n"); 
      // Increment row position 
      matrix_row++; 
    } 
  } 
 
  printf("Master: Recieved all work from workers\n"); 
  printf("Master: C matrix has been assembled\n"); 
 
  // Resolve total time 
  total_time = wall_clock() - total_time; 
  printf("Master: The multiplication took %g seconds total time\n", 
         (total_time/1000000.0)); 
 
  // Resolve worker time 
  printf("Master: The workers used %g seconds of processor time\n", 
         (worker_time/1000000.0)); 
 
  // Check and print the C matrix 
  if(N <= 36) 
    printDblMat(C, 'C'); 
  checkDblIdenMat(C, 'C'); 
 
  // Insert termination signal 
  // Set length of entry 
  tplength = sizeof(double); 
  // Set entry value 
  i  = -1; 
  // Set entry name 
  strcpy(tpname, "A-term"); 
  // Send entry to tuple space 
  status = cnf_tsput(tsd, tpname, &i, tplength); 
 
  // Free memory for rows array 
  free(rows); 
 
  // Terminate program 
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  printf("Master: Terminated\n"); 
  cnf_term(); 
} 

 
The following is the tuple space “optimized matrix multiplication” worker program 
implemented by sending work in chunks: 
 
#include <stdio.h> 
#include <sys/time.h> 
#include <sys/resource.h> 
 
double Ai[N/2][N];  // A chunk of A matrix 
double B[N][N];     // B matrix 
double Ci[N/2][N];  // A chunk of C matrix 
 
#include "matrix.h" 
 
 
// Main function 
main(){ 
 
  int chunk_size;     // Chunk size 
  int i, j, k;        // Matrix indices 
  int matrix_row;     // Index of matrix row 
  int array_pos;      // Get array position in rows array 
  int status;         // Return status for tuple operations 
  int res;            // Result tuple space identifier 
  int tsd;            // Problem tuple space identifier 
  double *rows;       // Rows from A 
  double worker_time; // Time to return to master 
  int tplength;       // Length of ts entry 
  char tpname[20];    // Identifier of ts entry 
  char host[128];     // Host machine name 
 
  // Get host machine name 
  gethostname(host, sizeof(host)); 
 
  // Open tuple spaces 
  printf("Worker: Opening tuple spaces\n"); 
  // Open problem tuple space 
  tsd = cnf_open("problem", 0); 
  // Open result tuple space 
  res = cnf_open("result", 0); 
  printf("Worker: Tuple spaces open complete\n"); 
 
  // Set tpname to B 
  strcpy(tpname,"B"); 
  // Read matrix B from tuple space 
  status = cnf_tsread(tsd, tpname, B, 0); 
 
  // Print matrix B 
  if(N <= 36) 
    printDblMat(B, 'B'); 
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  // Get chunk_size from master 
  // Set tpname to chunk_size 
  strcpy(tpname,"chunk_size"); 
  // Read chunk_size from tuple space 
  status = cnf_tsread(tsd, tpname, &chunk_size, 0); 
 
  // Prepare integer array for tuple space exchanges 
  tplength = (2+chunk_size*N)*sizeof(double); 
  if ((rows = (double*)malloc(tplength)) == NULL) 
    exit(-1); 
 
  // Loop until terminal signal is recieved 
  while(1){ 
    // Set entry name to any begins with A 
    strcpy(tpname,"A*"); 
    // Set length of entry 
    tplength = cnf_tsget(tsd, tpname, rows, 0); 
    // Normal recieve 
    if(tplength > 0){ 
      // Check termination signal 
      if (!strcmp(tpname, "A-term")){ 
        printf("Worker: Recieved the terminal signal\n"); 
        // Replace the terminal signal in problem ts 
        status = cnf_tsput(tsd, tpname, rows, tplength); 
        // Free memory for rows 
        free(rows); 
        // Terminate worker 
        printf("Worker: Terminated\n"); 
        cnf_term(); 
      } 
      // Get number rows in this chunk from last index 
      chunk_size = (int)rows[0]; 
      // Convert beginning row of entry to an integer 
      matrix_row = atoi(&tpname[1]); 
      printf("Worker: Recieved chunk_size %d matrix_row %d\n",  
              chunk_size, matrix_row); 
 
      // Get beginning worker time 
      worker_time = wall_clock(); 
 
      // For each row in chunk_size  
      // Copy rows from rows to Ai 
      for(i=0; i<chunk_size; i++) 
        for(j=0; j<N; j++){ 
          Ai[i][j] = rows[i*N+j+2]; 
          Ci[i][j] = 0; 
        } 
 
      // Perform multiplication 
      for(i=0; i<chunk_size; i++) 
        for(k=0; k<N; k++) 
          for(j=0; j<N; j++) 
            Ci[i][j] += Ai[i][k]*B[k][j]; 
 
      // For each row in chunk_size 
      // Copy rows from Ci to rows 
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      for(i=0; i<chunk_size; i++){ 
        for(j=0; j<N; j++) 
          rows[i*N+j+2] = Ci[i][j]; 
      } 
 
      // Put worker time in rows array 
      rows[1] = wall_clock() - worker_time; 
      // Set tpname to first row number in rows 
      sprintf(tpname,"%d", matrix_row); 
      printf("Worker: Putting chunk_size %d matrix_row %s\n", 
              chunk_size, tpname); 
      // Put the result in the result tuple space 
      status = cnf_tsput(res, tpname, rows, tplength); 
    } 
 
    else{ 
      printf("Worker: Recieved a zero length entry\n"); 
      // Free memory for rows 
      free(rows); 
      // Terminate worker 
      printf("Worker Terminated\n"); 
      cnf_term(); 
    } 
  } 
} 

 
To run the matrix multiplication distributed application with chunk size of 200 and N = 
500 (a 500 x 500 matrix): 
 

1. Set the factor value in the csl file to 200 (as shown below) 
2. Make the executables by typing “make SIZE=500” and pressing the enter key. 
3. Run the application by typing “prun tupleMat3” and pressing the enter key. 

 
configuration: tupleMat3; 
 
m: master = tupleMat3Master 
        (factor = 200 
        threshold = 1 
        debug = 0 
        ) 
   -> f: problem 
        (type = TS) 
   -> m: worker = tupleMat3Worker 
        (type = slave) 
   -> f: result 
        (type = TS) 
   -> m: master; 

 
The screen output for the master terminal with Synergy’s initialization and termination 
output removed should resemble: 
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Master: Opening tuple spaces 
Master: Tuple spaces open complete 
Master: Processors 2 
Master: Chunk size 200 
Master: Starting C = A . B 
  on 500 x 500 matrices 
Master: Putting B Length 2000000 Name B 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Master: Putting chunk_size Length 4 Name chunk_size 
Master: Ai tplength = (800016) 
Master: Putting A in problem tuple space 
Master: Putting chunk_size 200 matrix_row A0 remaining 300 
Master: Putting chunk_size 200 matrix_row A200 remaining 100 
Worker: Recieved chunk_size 200 matrix_row 200 
Master: Putting chunk_size 100 matrix_row A400 remaining 0 
Master: All work has been sent 
Master: Recieved chunk_sizs 200 matrix_row 0 
Worker: Putting chunk_size 200 matrix_row 200 
Master: Recieved chunk_sizs 200 matrix_row 200 
Master: Recieved chunk_sizs 100 matrix_row 400 
Master: Recieved all work from workers 
Master: C matrix has been assembled 
Master: The multiplication took 4.39389 seconds total time 
Master: The workers used 6.23962 seconds of processor time 
Master: C is Identity Matrix 
Master: Terminated 
Worker: Recieved the terminal signal 
Worker: Terminated 
== (tupleMat3) completed. Elapsed [4] Seconds. 
[c615111@owin ~/fpc08 ]> 

 
The screen output for the worker terminal with Synergy’s initialization and termination 
output removed should resemble: 
 
Worker: Opening tuple spaces 
Worker: Tuple spaces open complete 
Worker: Recieved chunk_size 200 matrix_row 0 
Worker: Putting chunk_size 200 matrix_row 0 
Worker: Recieved chunk_size 100 matrix_row 400 
Worker: Putting chunk_size 100 matrix_row 400 
Worker: Recieved the terminal signal 
Worker: Terminated 
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Synergy in the Future 
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Function and Command Reference 
 
 

Commands 
 
 

addhost 

 
This command adds a host into the host file. The command fails if the given host is not 
Synergy capable. The [-f] option forces the insertion even if the host is not ready.  A 
newly added host automatically becomes “selected”. 
 
Syntax: 
 
[c615111@owin ~ ]>addhost <hostname> [-f] 

 
 

cds 

 
Checks the status of remote daemons.  This command prints all available remote hosts to 
screen and shows their benchmark, name and availability. 
 
Example: 
 
[c615111@owin ~ ]>cds 
++ Benchmark (186) ++ (owin) ready. 
++ Benchmark (2077) ++ (rancor) ready. 
++ Benchmark (2109) ++ (saber) ready. 
++ Benchmark (1497) ++ (sarlac) ready. 
++ Benchmark (186) ++ (lynox) ready. 
[c615111@luke ~ ]> 

 
[c615111@owin ~ ]>cds 
 ????? PMD down (129.32.92.82,ewok) 
 ????? CID down (129.32.92.66,luke) (c615111) 
 ????? CID down (129.32.92.89,ackbar) (c615111) 
 ????? CID down (129.32.92.69,r2d2) (c615111) 
[c615111@luke ~ ]> 

 
[c615111@luke ~ ]>cds 
 ????? PMD down (129.32.92.82,ewok) 
++ Benchmark (371) ++ (luke) ready. 
 ????? CID down (129.32.92.89,ackbar) (c615111) 
 ????? CID down (129.32.92.69,r2d2) (c615111) 
[c615111@luke ~ ]> 
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chosts 

 
This command allows you to toggle the selected and de-selected status of processors.  
Only the selected processors will be used for immediate parallel processing.  The -v 
option gives the current Synergy connection status.  It requires some extra time. 
 
Syntax: 
 
[c615111@owin ~ ]>chosts [-v] 

 
Example: 
 
 
         Synergy V3.0 : Host Selection Utility 
=Status=No.===IP Address=================Host Name==============Login=F Sys.= 
[-----] (  1) #129.32.92.82        ewok                         c615111    none 
[-----] (  2) #129.32.92.66        luke                         c615111    none 
[-----] (  3) #129.32.92.89        ackbar                       c615111    none 
[-----] (  4) #129.32.92.69        r2d2                         c615111    none 
[-----] (  5) #129.32.92.87        alliance                     c615111    none 
[-----] (  6) #129.32.92.91        anakin                       c615111    none 
[-----] (  7) #129.32.92.78        bantha                       c615111    none 
[-----] (  8) #129.32.92.74        bobafet                      c615111    none 
[-----] (  9) #129.32.92.80        c3p0                         c615111    none 
[-----] ( 10) #129.32.92.88        chewbaca                     c615111    none 
[-----] ( 11) #129.32.92.86        droids                       c615111    none 
[-----] ( 12) #129.32.92.68        emperor                      c615111    none 
[-----] ( 13) #129.32.92.77        gredo                        c615111    none 
[-----] ( 14) #129.32.92.71        jabba                        c615111    none 
[-----] ( 15) #129.32.92.76        jawa                         c615111    none 
[-----] ( 16) #129.32.92.83        lando                        c615111    none 
[-----] ( 17) #129.32.92.84        leia                         c615111    none 
[-----] ( 18) #129.32.92.81        owin                         c615111    none 
[-----] ( 19) #129.32.92.70        rancor                       c615111    none 
        === Enter s(elect) | d(e-select) | c(ontinue): 
 

 
[-----] (  3) #129.32.92.89        ackbar                       c615111    none 
[-----] (  4) #129.32.92.69        r2d2                         c615111    none 
[-----] (  5) #129.32.92.87        alliance                     c615111    none 
[-----] (  6) #129.32.92.91        anakin                       c615111    none 
[-----] (  7) #129.32.92.78        bantha                       c615111    none 
[-----] (  8) #129.32.92.74        bobafet                      c615111    none 
[-----] (  9) #129.32.92.80        c3p0                         c615111    none 
[-----] ( 10) #129.32.92.88        chewbaca                     c615111    none 
[-----] ( 11) #129.32.92.86        droids                       c615111    none 
[-----] ( 12) #129.32.92.68        emperor                      c615111    none 
[-----] ( 13) #129.32.92.77        gredo                        c615111    none 
[-----] ( 14) #129.32.92.71        jabba                        c615111    none 



Synergy User Manual and Tutorial 

196 

[-----] ( 15) #129.32.92.76        jawa                         c615111    none 
[-----] ( 16) #129.32.92.83        lando                        c615111    none 
[-----] ( 17) #129.32.92.84        leia                         c615111    none 
[-----] ( 18) #129.32.92.81        owin                         c615111    none 
[-----] ( 19) #129.32.92.70        rancor                       c615111    none 
        === Enter s(elect) | d(e-select) | c(ontinue): s 
        === Host From (0 to continue) #: 1 
                              To      #: 4 
         (129.32.92.82 ewok) selected. 
         (129.32.92.66 luke) selected. 
         (129.32.92.89 ackbar) selected. 
         (129.32.92.69 r2d2) selected. 
        === Enter s(elect) | d(e-select) | c(ontinue): 

 
 
         Synergy V3.0 : Host Selection Utility 
=Status=No.===IP Address=================Host Name==============Login=F Sys.= 
[-----] (  1) 129.32.92.82         ewok                         c615111    none 
[-----] (  2) 129.32.92.66         luke                         c615111    none 
[-----] (  3) 129.32.92.89         ackbar                       c615111    none 
[-----] (  4) 129.32.92.69         r2d2                         c615111    none 
[-----] (  5) #129.32.92.87        alliance                     c615111    none 
[-----] (  6) #129.32.92.91        anakin                       c615111    none 
[-----] (  7) #129.32.92.78        bantha                       c615111    none 
[-----] (  8) #129.32.92.74        bobafet                      c615111    none 
[-----] (  9) #129.32.92.80        c3p0                         c615111    none 
[-----] ( 10) #129.32.92.88        chewbaca                     c615111    none 
[-----] ( 11) #129.32.92.86        droids                       c615111    none 
[-----] ( 12) #129.32.92.68        emperor                      c615111    none 
[-----] ( 13) #129.32.92.77        gredo                        c615111    none 
[-----] ( 14) #129.32.92.71        jabba                        c615111    none 
[-----] ( 15) #129.32.92.76        jawa                         c615111    none 
[-----] ( 16) #129.32.92.83        lando                        c615111    none 
[-----] ( 17) #129.32.92.84        leia                         c615111    none 
[-----] ( 18) #129.32.92.81        owin                         c615111    none 
[-----] ( 19) #129.32.92.70        rancor                       c615111    none 
        === Enter s(elect) | d(e-select) | c(ontinue): 
 

 
[-----] (  1) 129.32.92.82         ewok                         c615111    none 
[-----] (  2) 129.32.92.66         luke                         c615111    none 
[-----] (  3) 129.32.92.89         ackbar                       c615111    none 
[-----] (  4) 129.32.92.69         r2d2                         c615111    none 
[-----] (  5) #129.32.92.87        alliance                     c615111    none 
[-----] (  6) #129.32.92.91        anakin                       c615111    none 
[-----] (  7) #129.32.92.78        bantha                       c615111    none 
[-----] (  8) #129.32.92.74        bobafet                      c615111    none 
[-----] (  9) #129.32.92.80        c3p0                         c615111    none 
[-----] ( 10) #129.32.92.88        chewbaca                     c615111    none 
[-----] ( 11) #129.32.92.86        droids                       c615111    none 
[-----] ( 12) #129.32.92.68        emperor                      c615111    none 
[-----] ( 13) #129.32.92.77        gredo                        c615111    none 
[-----] ( 14) #129.32.92.71        jabba                        c615111    none 
[-----] ( 15) #129.32.92.76        jawa                         c615111    none 
[-----] ( 16) #129.32.92.83        lando                        c615111    none 
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[-----] ( 17) #129.32.92.84        leia                         c615111    none 
[-----] ( 18) #129.32.92.81        owin                         c615111    none 
[-----] ( 19) #129.32.92.70        rancor                       c615111    none 
        === Enter s(elect) | d(e-select) | c(ontinue): d 
        === Host From (0 to continue) #: 2 
                              To      #: 3 
         (luke, #129.32.92.66) de-selected. 
         (ackbar, #129.32.92.89) de-selected. 
        === Enter s(elect) | d(e-select) | c(ontinue): 

 
 
         Synergy V3.0 : Host Selection Utility 
=Status=No.===IP Address=================Host Name==============Login=F Sys.= 
[-----] (  1) 129.32.92.82         ewok                         c615111    none 
[-----] (  2) #129.32.92.66        luke                         c615111    none 
[-----] (  3) #129.32.92.89        ackbar                       c615111    none 
[-----] (  4) 129.32.92.69         r2d2                         c615111    none 
[-----] (  5) #129.32.92.87        alliance                     c615111    none 
[-----] (  6) #129.32.92.91        anakin                       c615111    none 
[-----] (  7) #129.32.92.78        bantha                       c615111    none 
[-----] (  8) #129.32.92.74        bobafet                      c615111    none 
[-----] (  9) #129.32.92.80        c3p0                         c615111    none 
[-----] ( 10) #129.32.92.88        chewbaca                     c615111    none 
[-----] ( 11) #129.32.92.86        droids                       c615111    none 
[-----] ( 12) #129.32.92.68        emperor                      c615111    none 
[-----] ( 13) #129.32.92.77        gredo                        c615111    none 
[-----] ( 14) #129.32.92.71        jabba                        c615111    none 
[-----] ( 15) #129.32.92.76        jawa                         c615111    none 
[-----] ( 16) #129.32.92.83        lando                        c615111    none 
[-----] ( 17) #129.32.92.84        leia                         c615111    none 
[-----] ( 18) #129.32.92.81        owin                         c615111    none 
[-----] ( 19) #129.32.92.70        rancor                       c615111    none 
        === Enter s(elect) | d(e-select) | c(ontinue): 
 

 
 

cid 

 
 
 
Example: 
 
[c615111@luke ~ ]>cid & 
[1] 23104 
[c615111@luke ~ ]> CID HOST NAME (luke) 
 Actual CID IP(129.32.92.66) 
 
CID ready. 
[c615111@owin ~ ]> 

 
[c615111@owin ~ ]>cid & 
[2] 240 
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[c615111@owin ~ ]> CID HOST NAME (owin) 
 Actual CID IP(129.32.92.81) 
 
Found an old CID. 
Removed an old CID 
Reusing cid entry. 
CID ready. 
[c615111@owin ~ ]> 

 
 

delhost 

 
This command permanently deletes a host from the host file. It fails if the host is Synergy 
ready. The [-f] option forces the removal. 
 
Syntax: 
 
[c615111@owin ~ ]>delhost <hostname> [-f] 

 
Example: 
 
 

dhosts 

 
This command lets you permanently delete more than one host at a time. The -v option 
will verify the hosts' current Synergy connection status (it takes some extra time). 
 
Syntax: 
 
[c615111@owin ~ ]>dhosts [-v] 
 
Example: 
 
 

 

kds  

 
This command kills all remote daemons.  It only kills the daemons started by your own 
login. It will NOT kill daemons started by others. 
 

pcheck 

 
Utility to check and maintain running parallel programs 
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Syntax: 
 
[c615111@owin ~ ]>pcheck 

 
Example: 
 
 

pmd 

 
 
 
Example: 
 
[c615111@ewok ~ ]>pmd & 
[1] 24172 
[c615111@ewok ~ ]> 

 
[c615111@luke ~ ]>pmd & 
[2] 23106 
[c615111@luke ~ ]>PMD already running. 
 
[2]    Exit 1                        pmd 
[c615111@luke ~ ]> 

 
 

prun 

 
Example: 
 
[c615111@owin ~/example01 ]>prun tupleHello1 
== Checking Processor Pool: 
++ Benchmark (185) ++ (owin) ready. 
++ Benchmark (1487) ++ (rancor) ready. 
++ Benchmark (1482) ++ (saber) ready. 
== Done. 
== Parallel Application Console: (owin) 
== CONFiguring: (tupleHello1.csl) 
== Default directory: (/usr/classes/cis6151/c615111/example01) 
++      Automatic program assignment: (worker)->(owin) 
++      Automatic slave generation: (worker1)->(rancor) 
++      Automatic slave generation: (worker2)->(saber) 
++      Automatic program assignment: (master)->(owin) 
++      Automatic object assignment: (problem)->(owin) pred(1) succ(3) 
++      Automatic object assignment: (result)->(owin) pred(3) succ(1) 
== Done. 
== Starting Distributed Application Controller ... 
Verifying process [|(c615111)|*/tupleHello1Worker 
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Verifying process [|(c615111)|*/tupleHello1Worker 
Verifying process [|(c615111)|*/tupleHello1Master 
Verifying process [|(c615111)|*/tupleHello1Worker 
** (tupleHello1.prcd) verified, all components executable. 
** (tupleHello1.prcd) started. 
== (tupleHello1) completed. Elapsed [5] Seconds. 
[c615111@owin ~/example01 ]> 

 
 

sds 

 
This command starts daemons on selected hosts (defined in ~/.sng_hosts). 
 
 
 
 

sfs 

 
 
Example: 
 
 

shosts 

 
 
Example:
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Functions 
 

cnf_close(id)  

 
PURPOSE:  Close all internal data structures according to type 
PARAMETERS: int id – identifier of object to be closed 
RETURNS:    Nothing 
 
 

cnf_dget(tpname, tpvalue, tpsize) 

 
PURPOSE:  Destructive read a tuple from a direct tuple space 
PARAMETERS: char *tpname – the name of the object to be read from 
    char *tpvalue – address of receiving buffer 

 int tpsize – ?  
RETURNS:    int tpsize – the length of the data read in 8-bit bytes 
 
 

cnf_dinit() 

 
PURPOSE:  Initializes the tid_list before each scatter operation 
PARAMETERS: None 
RETURNS:    1 always 
 
 

cnf_dput(tsd, tid, tpname, tpvalue, tpsize) 

 
PURPOSE:  Inserts a typle into a direct tuple space 
PARAMETERS: int tsd  

long tpsize 
char *tid 
char *tpname 
char *tpvalue 

RETURNS:    ? 
 
 

cnf_dread(tpname, tpvalue, tpsize) 

 
PURPOSE:  Destructive read a tuple from a direct tuple space 
PARAMETERS: int  tpsize; 

char *tpname; 
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char *tpvalue; 
RETURNS:    int tpsize 
 
 

cnf_dzap() 

 
PURPOSE:  Removes all local CID's tuples 
PARAMETERS: None 
RETURNS:    1 if success or an error code otherwise 
 
 

cnf_eot(id) 

 
PURPOSE:  Marks the end of tasks 
PARAMETERS: int id - ? 
RETURNS:    1 if success or an error code otherwise 
 
 

cnf_error(errno) 

 
PURPOSE:  Prints to the user the kind of error encountered 
PARAMETERS: int errno 
RETURNS:    1 always 
 
 

cnf_fflush(id) 

 
PURPOSE:  Flushes a file 
PARAMETERS: int  id – index into cnf_map to get channel #/ptr 
RETURNS:    1 if success or 0 if error 
 
 

cnf_fgetc(id, buf) 

 
PURPOSE:  Read a char from file into buffer 
PARAMETERS: int id – index into cnf_map to get channel #/ptr 
   char *buf; – address of receiving buffer 
RETURNS:    0 on EOF otherwise 1 
 
 

int cnf_fgets(id, buf, bufsiz) 
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PURPOSE:  Read a line from file into buffer 
PARAMETERS: int id – index into cnf_map to get channel #/ptr 

char  *buf – address of receiving buffer 
int bufsiz – max size of receiving buffer 

RETURNS:    0 if EOF otherwise number of bytes read 
 
 

cnf_fputc(id, buf) 

 
PURPOSE:  Write a char from buffer to file 
PARAMETERS: int id – index into cnf_map to get channel #/ptr 

char buf – address of receiving buffer 
RETURNS:    1 if success or 0 if error 
 
 

cnf_fputs(id, buf, bufsiz) 

 
PURPOSE:  Write a line from buffer to file 
PARAMETERS: int id – index into cnf_map to get channel #/ptr 

char *buf – address of receiving buffer 
int bufsiz – size of buffer 

RETURNS:    Number of bytes written or 0 if error 
 
 

cnf_fread(id, buf, bufsiz, nitems) 

 
PURPOSE:  Read a 'record' from file into buffer 
PARAMETERS: int id – index into cnf_map to get channel #/ptr 

char *buf – address of receiving buffer 
int bufsiz – max size of receiving buffer 
int nitems – number of bufsiz blocks to read 

RETURNS:    0 if EOF otherwise number of bytes read 
 
 

cnf_fseek(id, from, offset) 

 
PURPOSE:  Set the reader pointer from "from" to "offset" in a file 
PARAMETERS: int id – index into cnf_map to get channel #/ptr 

int from 
int offset 
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RETURNS:    1 if success or 0 if error 
 
 

cnf_fwrite(id, buf, bufsiz, nitems) 

 
PURPOSE:  Write a 'record' from buffer into file 
PARAMETERS: int id – index into cnf_map to get channel #/ptr 

char *buf – address of receiving buffer 
int bufsiz – max size of receiving buffer 
int nitems – number of bufsiz blocks to write 

RETURNS:    Number of bytes written or an error code on error 
 
 

cnf_getarg(idx) 

 
PURPOSE:  Returns the runtime argument by index 
PARAMETERS: int idx – the index 
RETURNS:    char * (idx'th argument) 
 
 

cnf_getf() 

 
PURPOSE:  Returns the factor value for loop scheduling 
PARAMETERS: None 
RETURNS:    f value (0..100] integer 
 
 

cnf_getP() 

 
PURPOSE:  Returns the number of parallel workers 
PARAMETERS: None 
RETURNS:    P value [1..N] integer 
 
 

cnf_gett() 

 
PURPOSE:  Returns the threshold value for loop scheduling 
PARAMETERS: None 
RETURNS:    t value [1..N) integer 
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cnf_gts(tsd) 

 
PURPOSE:  Get all tid's processor assignments in one shot 
PARAMETERS: int tsd - ? 
RETURNS:    1 if success, 0 if no memory or an error code otherwise 
 
 

cnf_init() 

 
PURPOSE: Initializes sng_map_hd and sng_map using either the init file or 

direct transmission from DAC.  The init file's name is constructed 
from the value of the logical name CNF_MODULE suffixed with 
".ini". 

PARAMETERS: None 
RETURNS:    Nothing if successful or an error code otherwise 
 
 

cnf_open(local_name, mode) 

 
PURPOSE: Lookup a pipe or tuple space object in sng_map structure, open a 

channel to the physical address for that ref_name 
PARAMETERS: char *local_name – local_name to find in cnf_map 

char *mode – open modes: r,w,a,r+,w+,a+. Only for FILEs 
RETURNS:   int chan – an integer handle, if successful or an error code 

otherwise.  This is used like a usual Unix file handle. 
 
 

cnf_print_map() 

 
PURPOSE:  ? 
PARAMETERS: None 
RETURNS:    Nothing 
 
 

cnf_read(id, buf, bufsiz) 

 
PURPOSE: read a 'record' from file or pipe into buffer (starting at address 

buff). 
PARAMETERS: int   id – index into cnf_map to get channel #/ptr 

int   bufsiz – max size of receiving buffer 
char  *buf – address of receiving buffer 
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RETURNS:    0 on EOF otherwise number of bytes read 
 
 

cnf_rmall(id) 

 
PURPOSE:  Destroy all tuples in a named tuple space 
PARAMETERS: int id - ? 
RETURNS:    0 if successful or an error code otherwise 
 
 

cnf_sot(id) 

 
PURPOSE:  Marks the start of scantering of tasks 
PARAMETERS: int id 
RETURNS:    1 if successful or an error code otherwise 
 
 

cnf_spzap(tsd) 

 
PURPOSE:  Removes all "retrieve" entries in TSH 
PARAMETERS: int tsd - ? 
RETURNS:    1 if successful or an error code otherwise 
 
 

cnf_term() 

 
PURPOSE: Called before image return to clean things up.  Closes any files left 

open. 
PARAMETERS: None 
RETURNS:    Nothing 
 
 

cnf_tget(tpname, tpvalue, tpsize) 

 
PURPOSE:  Destructive read a tuple from a named tuple space 
PARAMETERS: int tpsize -  

char *tpname -  
char *tpvalue -  

RETURNS:   int tpsize – the size of the tuple received if successful or an error 
code otherwise 
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cnf_tsput(tpname, tpvalue, tpsize) 

 
PURPOSE:  Inserts a tuple into a named tuple space 
PARAMETERS: int tpsize -  

char *tpname -  
char *tpvalue -  

RETURNS:    ? on success or an error code otherwise 
 
 

cnf_tsread(tpname, tpvalue, tpsize) 

 
PURPOSE:  Read a tuple from a named tuple space 
PARAMETERS: int tpsize -  

char *tpname -  
char *tpvalue -  

RETURNS:   int tpsize – the size of the tuple received if successful or an error 
code otherwise 

 
 

cnf_tsget(id, tpname, tpvalue, tpsize) 

 
PURPOSE:  Destructive read a tuple from a named tuple space 
PARAMETERS: int id -  

int tpsize -  
char *tpname -  
char *tpvalue - 

RETURNS:   int tpsize – the size of the tuple received if successful or an error 
code otherwise 

 
 

cnf_tsput(id, tpname, tpvalue, tpsize) 

 

PURPOSE:  Inserts a tuple into a named tuple space 
PARAMETERS: int id -  

int tpsize -  
char *tpname -  
char *tpvalue - 

RETURNS:    ? on success or an error code otherwise 
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cnf_tsread(id, tpname, tpvalue, tpsize) 

 
PURPOSE:  Read a tuple from a named tuple space 
PARAMETERS: int id -  

int tpsize -  
char *tpname -  
char *tpvalue - 

RETURNS:   int tpsize – the size of the tuple received if successful or an error 
code otherwise 

 
 

cnf_write(id, buf, bytes) 

 
PURPOSE: Send a 'record' to file (or mailbox or decnet channel) from buffer 

(starting at address buff).  bytes is the number of bytes to send.  id 
is the index into cnf_map global data structure where the actual 
channel number or file pointer is stored. 

PARAMETERS: int id – index into cnf_map for channel #/ptr 
int bytes – number of bytes to send/write 
char  buf[] – address of message to send 

RETURNS:    1 if successful or an error code otherwise 
 
 

cnf_xdr_fgets(id, buf, bufsize, e_type) 

 
PURPOSE: Read the external data representation of a line from file into buffer 

(starting at address xdr_buff) and translates it to C language. 
PARAMETERS: int id – The index into cnf_map global data structure where the 

actual channel number or file pointer is stored 
char *buf -  
int bufsize – the number of bytes to read 
int e_type -  

RETURNS:   0 on EOF or number of bytes read on success otherwise an error 
code on error 

 
 

cnf_xdr_fputs(id, buf, bufsize, e_type) 

 
PURPOSE: Translates a line to it's external data representation and sends it to 

file from buffer (starting at address xdr_buff).  . 
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PARAMETERS: int id – The index into cnf_map global data structure where the 
actual channel number or file pointer is stored 
char *buf -  
int bufsize – the number of bytes to send 
int e_type -  

RETURNS:   int status - number of bytes written, 0 if error writing or an error 
code otherwise 

 
 

cnf_xdr_fread(id, buf, bufsize, nitems, e_type) 

 
PURPOSE: Read the external data representation of a 'record' from file into 

buffer (starting at address xdr_buff) and translates it to C language. 
PARAMETERS: int id – The index into cnf_map global data structure where the 

actual channel number or file pointer is stored 
char *buf -  
int bufsize – the number of bytes to read 
int nitems -  
int e_type -  

RETURNS:   int status - number of bytes read, 0 if error writing or an error code 
otherwise 

 
 

cnf_xdr_fwrite(id, buf, bufsize, nitems, e_type) 

 
PURPOSE: Translates a 'record` to it's external data representation and sends it 

to file from buffer (starting at address xdr_buff). 
PARAMETERS: int id – The index into cnf_map global data structure where the 

actual channel number or file pointer is stored 
char *buf -  
int bufsize – the number of bytes to send 
int nitems -  
int e_type - 

RETURNS:    Number of bytes written or an error code or -1 on error 
 
 

cnf_xdr_read(id, buf, bufsize, e_type) 

 
PURPOSE: Read the external data representation of a 'record' from file or pipe 

into buffer (starting at address xdr_buff) and translates it to C 
language.             
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PARAMETERS: int id – The index into cnf_map global data structure where the 
actual channel number or file pointer is stored 
char *buf -  
int bufsize – the number of bytes to read 
int e_type - 

RETURNS:   int status - number of bytes read, 0 if error writing or an error code 
otherwise 

 
 

cnf_xdr_tsget(tsh, tp_name, tuple, tp_len, e_type) 

 
PURPOSE: Destructive reads the external data representation of a tuple from a 

named tuple space and Translates it to C language. 
PARAMETERS: int tsh 

char *tp_name 
char *tuple 
int tp_len 
int e_type 

RETURNS: int status - the size of the tuple received if successful, 0 if it is an 
asynchronous read or –1 on error 

 
 

cnf_xdr_tsput(tsh, tp_name, tuple, tp_len, e_type) 

 
PURPOSE: Translates a tuple to it's external data representation and inserts it 

into a named tuple space 
PARAMETERS: int tsh 

char *tp_name 
char *tuple 
int tp_len 
int e_type 

RETURNS:    int status - ? on success or an error code otherwise 
 
 

cnf_xdr_tsread(tsh, tp_name, tuple, tp_len, e_type) 

 
PURPOSE: Reads the external data representation of a tuple from a named 

tuple space and translates it to C language.                      
PARAMETERS: int tsh 

char *tp_name 
char *tuple 
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int tp_len 
int e_type 

RETURNS:   int status - number of bytes read, 0 if error writing or an error code 
or –1 on error 

 
 

cnf_xdr_write(id, buf, bufsize, e_type) 

 
PURPOSE:  Translates a 'record` to it's external data representation and sends it 
to file (or mailbox or decnet channel) from buffer (starting at address xdr_buff). 
PARAMETERS: int id – The index into cnf_map global data structure where the 

actual channel number or file pointer is stored 
char *buf -  
int bufsize – the number of bytes to send 
int e_type - 

RETURNS:    1 if successful or an error code or –1 on error 
 
 
 
 
PURPOSE:   
PARAMETERS:  
RETURNS:     
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Error Codes 
 
 
TSH_ER_NOERROR  Normal operation - No error at all 
TSH_ER_INSTALL  Error: Tuple Space daemon could not be started 
TSH_ER_NOTUPLE  Error: Could not find such tuple 
TSH_ER_NOMEM  Error: Tuple space daemon out of memory 
TSH_ER_OVERRT  Warning: Tuple was overwritten 
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