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The first electronic digital computers were variations on the protean design of a limited
Turing machine, which described not a single device but a schema, and which could
assume many forms and could develop in many directions. It became what various groups
of people made of it. The computer thus has little or no history of its own. Rather, it has
histories derived from the histories of the groups of practitioners who saw in it, or in some
yet to be envisioned form of it, the potential to realise their agendas and aspirations. What
kinds of computers we have designed since 1945, and what kinds of programs we have
written for them, reflect not so much the nature of the computer as the purposes and
aspirations of the communities who guided those designs and wrote those programs. Their
work reflects not the history of the computer but the histories of those groups, even as the
use of computers in many cases fundamentally redirected the course of those histories.
Separating the histories of computing, or perhaps even of computings, shifts attention to
the major communities, or bodies of shared disciplinary practices, who embraced the new
device and helped to shape it by adapting it to their needs and aspirations.

History of commitments constrains choice.
Narrow incentives and opportunities motivate choice.’

The ‘digital’ in the title of the lecture series from which this paper derives points to the
tuture of the humanities, which for the moment remain still largely ‘analogue’. I can’t claim
strong credentials when it comes to looking toward the future. During my final year at
Harvard in 1959/60, I had a job as a computer programmer for a small electronics firm in
Boston. It involved writing code for a Datatron 204, soon to become through acquisition
the Burroughs 204, a decimally addressed, magnetic drum machine. Programming it meant
understanding how it worked, since it was just you and the computer: no operating system,
no programming support. Six or seven months of that persuaded me that computers were
not very interesting, nor did they seem to me to have much of a future. So I abandoned
my thoughts of going into applied mathematics and became a historian instead. With
foresight like that, it was probably a good choice.

I'm not sure my foresight improved when I returned as historian to computing in the
early 1980s, at least not enough to make the right investments. Yet, I did have enough
critical understanding of what was happening to distrust the utopian promises of the time.
Henry Adams showed in his Education how the past can be a good place to look for the
tuture. History helps to us to know where we might be headed by establishing where we
are and how we got here. The future is largely the result of our present momentum. There
are surprises, of course, things we don’t see coming. Flash Gordon and Buck Rogers were
rocketing among the planets in the 1930s without the aid of computers, which we now
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know to be indispensable to the enterprise and which made a reality of fiction. But even
surprises wind up having a history, first because the new most often comes incrementally
embedded in the old, and because in the face of the unprecedented we look for prece-
dents.” It is the only way we can understand what is new about something, or the way in
which it is new, and adjust our thinking to it.

It is especially important to bear that in mind with respect to computers and computing,
because they have always been surrounded by hype (it was — and may still be — the only
way to sell them), and hype hides history. From the very beginning people in the field have
been engaged in instant historical analysis aimed at declaring a new epoch, a radical
disjuncture. Edmund C. Berkeley, the author in 1948 of Giant Brains, or Machines that Think,
first announced the ‘computer revolution’ in a book with that title in 1962.% Identifying it
as an aspect of the ‘second industrial revolution’, Berkeley combined a gentle introduction
to computers with fretting over the social implications of the automation of thought.
Since his book, the word ‘revolution’ has appeared regularly in tandem with ‘computer’ or
‘information’, where the latter term has become all but identical with what computers store
and manipulate. Were one to take this literature at face value, the job of the historian
would seem clear: to chronicle the revolution — or, rather, revolutions, because no area of
computing is complete without causing a revolution — and to rank it among the other great
revolutions of history: the agricultural revolution, the scientific revolution, the industrial
revolution.

Historians prefer to judge revolutions in retrospect, after the dust has settled. Revolu-
tions aren’t what they used to be. The events of the past decades have shown us how hard
it is to erase or escape a people’s history. As historian of science I'm watching a subject
I've taught for more than thirty years, the scientific revolution, declared a non-event.*
More important, perhaps, most declarations of the ‘computer revolution’ have rested on
future promises rather than on present or past performance. ‘See what computers are on
the verge of doing. It will be revolutionary!” “When computers start thinking for them-
selves, what is going to become of us?” Anyone familiar with the literature of computing
over the past forty years knows that the field has been long on promises and short on
performance. The literature is filled with revolutionary breakthroughs postponed owing to
technical difficulties.

History is the record of our collective experience, our social memory. We turn to it,
as we do to our personal experience, consciously when we meet new situations, uncon-
sciously as we live day to day. My research into the formation of two new subjects,
theoretical computer science and software engineering, reveals how people engaged in new
enterprises bring their histories to the task, often different histories reflecting their differ-
ent backgrounds and training.’ The creators and eatly practitioners of these fields all came
from somewhere else. In a recent article, ‘Finding a history for software engineering’,
I have tried to show how efforts to define and articulate a new engineering discipline
for software have rested on practitioners’ understanding of the history of other fields of
engineering.® It is incorporated in our institutions, most particularly our schools, where it
is taught consciously in history courses, unconsciously in every other part of the curricu-
lum. It is embodied in the artefacts we use, in the customs we follow, in the language we
speak. Whether we want to or not, we use history. As in the case of personal memory, the
question is whether we use it well. That is a matter both of getting the history right and of
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getting the right history. As Rob Kling and Walt Scacchi argue in their studies of the social
patterns of computing and their impact on systems design, ‘history of commitments
constrains choices’ — even, or especially, revolutionary choices.

DECENTRING THE MACHINE

With some recent exceptions, the history of computing has been centred on the machine,
tracing its origins back to the abacus and the first mechanical calculators and then follow-
ing its evolution through the generations of mainframe, mini, and micro. Alongside this
machinic main thread run accounts of scientific calculations; statistics and tabulations; and
the growing informational needs of business, industry and government, all converging
in the mid 1940s on the electronic digital computer and then spreading out again in
new forms shaped by it, in the end to be tied together by the internet (Fig. 1). Once
invented, the computer evolves naturally into the PC as its present most visible form,
rather than into a variety of coexisting, mutually supportive forms (as if mainframes
disappeared with the invention of the minicomputer). Its progress is inevitable and
unstoppable, its effects revolutionary.

Chronicling the revolution, that machine-centred history reinforces the hype and with it
what one might call the ‘impact theory’ of the relation of technology and society. There is
society strolling along, minding its own business, and, whaml, it gets impacted and is left
reeling by a revolutionary technology, which changes everything overnight or in some
similarly short time. ‘[T]he ominous rumble you sense is the future coming at us’, wrote
one management systems expert in 1953.7 From that perspective, society breaks up
into two classes — those who are on the train and those who are not — and the latter are
hopeless (o, as one enthusiast recently put it with a curious nod to Engels, consigned to
the dustbin of history). In our field, you’re either a digeratus or a dinosaur.
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1 The machine centred version of the history of computing
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But history of that sort should give us pause on at least two counts. First, computing is
a technology (or a constellation of technologies) and, however revolutionary, should have
the same sort of richly contextual history that other revolutionary technologies have —
such as the steam powered factory and the automobile. The question is not whether new
technology involves social change, but how it does. In particular, it is a question of agency.
As a form of technological determinism, the impact theory leaves people reacting to
technology, rather than actively shaping it. Much of the thoughtful history of technology
over the past twenty years has aimed at getting people back into the picture or, to change
the metaphor, into the driver’s seat. The devices and systems of technology are not natural
phenomena but the products of human design, that is, they are the result of matching
available means to desired ends at acceptable cost. The available means ultimately do rest
on natural laws, which define the possibilities and limits of the technology. But desired
ends and acceptable costs are matters of society. Given a set of possibilities, what do we
want to do, and what are we willing to pay (in money, time, effort and tradeoffs) to do it?

Second, whereas other technologies may be said to have a nature of their own and thus
to exercise some agency in their design, the computer has no such nature. Or, rather, its
nature is protean; the computer is — or certainly was at the beginning — what we make of
it (or now have made of it) through the tasks we set for it and the programs we write for
it. Let me take a moment to explain.

THE PROTEAN MACHINE

The new appears to us in contexts defined by the old, by history, or rather histories. Look
(Fig. 2) at this picture of the ENIAC, the first electronic digital calculator (not yet a full
computer, but its immediate predecessor). It is a new device constructed from existing
components, as the scheme by Arthur Burks shows (Fig. 3). Those components embody
its history, or rather the history of which it was a product. At this point it was merely doing
electronically, albeit for that reason much more quickly, what other devices of the period
were doing electromechanically and previous devices had done mechanically, and one can
tind indications of that throughout its design.

2 The ENIAC in 1946
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3 Sources of ENIAC and EDVAC?

Only in the next iteration of its design, the EDVAC, could it do things no earlier
machine had been able to do, namely make logical decisions based on the calculations it
was carrying out and modify its own instructions. The elements of that design have
another history, as different from that of ENIAC as the schematic in Fig. 4 is from its
circuit diagrams. That is the history of logic machines, reaching back to Leibniz and
running through Boole and Turing.” The combination of those two histories made the
computer in concept a universal Turing machine, limited in practice by its finite speed and
capacity. But making it universal, or general purpose, also made it indeterminate. Capable
of calculating any logical function, it could become anything but was in itself nothing (well,
as designed, it could always do arithmetic).

COMMUNITIES OF COMPUTING

In the early years, then, as the computer moved out of the science and engineering
laboratory, it did not bring much history of its own with it. It could not dictate how it was
to be used and hence could not have an ‘impact’ until people figured out what to do with
it. Mechanical calculation had a history; symbolic processing did not. Thus the history
of computing is the history of what people wanted computers to do and how people
designed computers to do it. That may not be one history, or at least it may not be useful
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4 Architecture of EDVAC (schematic diagram by the author, based on J. von Neumann: ‘First
draft of a report on the EDVAC’)

to treat it as one. Different groups of people saw different possibilities in computing, and
they had different experiences as they sought to realise those possibilities. One may speak
of them as ‘communities of computing’, or perhaps as communities of practitioners that
took up the computer, adapting to it while they adapted it to their purposes. The chart in
Fig. 5 shows the major groups.

The first, of course, is the scientists and engineers for whose needs the computer had
been created. Their practice guided the earliest designs of computers, the series of one-off
machines built at government and university sites. They are the community for which
the first high level programming language, FORTRAN, was created, a language which
continues in use down to the present.

The second group comprises the field of data processing, the first commercial extension
of the computer. Recent work by Martin Campbell-Kelly, James Cortada and others
(themselves working from an older literature) reveals a rich history going back more than
a century. That history explains why IBM took its time in deciding to go into the computer
business and why the business took the form it did once the decision had been made.

Tightly connected with data processing is the field of management science, dating back
to the work of Frederick W. Taylor and others at the turn of the last century, and beyond
that perhaps to Chatles Babbage’s On the Economy of Machinery and Manufactures (1832).
Operations research (or in England, operational research) brought a new mathematical
dimension to the field as practitioners sought to apply methods of tactical evaluation to
business and industry.
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5 The communities of computing

Computers also fit into the agenda of industrial engineering in the area of automation
and control of production flow, which was given its twentieth century shape by Henry
Ford but which can arguably be traced back to Matthew Boulton and James Watt."
Indeed, as just noted, it is here, rather than to the Analytical Engine, that one should be
looking to place Chatles Babbage into the genealogy of computing.

Having already created some of the first electromechanical computing devices to
address problems of network analysis and switching systems, the communications industry
quickly adopted the electronic computer and began the process of building it into our
environment.

Automation of military command and control systems (SAGE and WWMCCS)!
reflects the history of modern warfare, which reaches back several centuries. In light of
recent literature on the subject, we need a fuller and more subtle understanding than we
have of the history of the community of practitioners in the military, to compensate for
the visions of the future designed for it by researchers outside it. An important spinoff of
this line of research was the field of human—computer interaction, aimed at the augmenta-
tion of human skills by the computer. As David Mindell has shown recently in Benween
Humans and Machines, that field too had a history of its own before the computer.

New fields emerged alongside those that predated the computer. Although there was at
first some disagreement about whether computers were sufficiently different from eatly
calculating machines to constitute a subject of study in themselves, the work of John von
Neumann and Alan Turing pointed to the theoretical potential of the device. Moreover,
the need to develop systems to both make the computer easier to use and to keep it
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running efficiently also opened a range of theoretical and technical issues that prompted
the emergence of the new subject of computer science or informatics, as it is known in the
non-anglophone wortld.

Until recently the history of computing in these fields has been written in terms of the
machine and its impact (revolutionary, of course) on them. The emphasis has lain on what
the computer could do rather than on how the computer was made to do it. As I said, in
many cases their existence as fields of computing has led to their being written into the
history leading up to the computer as if the purposes to which they put the computer had
somehow previously constituted a demand for which the computer had been created.
Within the last few years, however, that view has begun to shift. In Zuformation 1echnology as
Business History, James Cortada justifies a chapter on the ‘100-year history of mechanical
devices used in modern times to do data processing’ by admonishing:

Why do we care? Many of the ways you and I receive computers, buy them, and use this technol-
ogy were worked out in companies that existed ten, thirty, even fifty years before the first commer-
cial computer was available. Did you know that National Cash Register (NCR) and Burroughs — in
time both peddlers of computers — had been selling information-hand|[l]ing machines over 100
years ago — of, that International Business Machines Corporation (IBM) has been around since
before World War I? Historical context is so important; computers have a lot of it, and its patterns
of behavior are described in this chapter.'

Tom Haigh, whose work on the history of information systems is beginning to appear,
reinforces the point:

Work by historians such as Martin Campbell-Kelly, JoAnne Yates, and William Aspray has consis-
tently shown that the computer industry was, more than anything else, a continuation of the
pre-1945 office equipment industry and in particular of the punched card machine industry. Their
careful exploration of computer technology and the dynamics of the computer hardware industry
leave little doubt that IBM’s eventual dominance of the computer industry owes as much to the
events of the 1930s as to those of the 1960s. This is in itself a major departure from the perception,
common during the 1950s and common today, that each new generation of computer equipment
is a revolutionary technology without historical roots, a breakthrough plucked fully formed from
the forehead of (to mix a metaphor) Prometheus.

When looking at the introduction of computing into the business world, Haigh insists that
we must break away from a focus on computers.

The use of computer technology in a particular social space (such as the laboratory, office, or
factory) cannot be addressed without also studying the earlier history of this setting, the people in
it, and the objectives to which the machine is put. So, while coherent one-volume histories of the
computer hardware industry and its technologies can be written, it seems unlikely that we can
produce a single coherent narrative about the use of computers or of associated tasks such as

analysis, programming, or operation.'

Approaching data processing from this wider perspective reveals a history quite different
from the current history of computing.

Taking a similarly inspired approach in 7he Government Machine, Jon Agar gives an idea of
how different that history looks for the development of computing in Britain. Agar looks
back to the eighteenth century, when political thinkers began to speak of ‘the machinery of
government’, and follows the development of that metaphor, as it led to the ever widening
collection of data about the population and the introduction of machines of various

INTERDISCIPLINARY SCIENCE REVIEWS, 2005, VOL. 30, NO. 2



The bhistories of computing(s) 127

sorts to record and manipulate the data. Sceptical of the notion of a computer based
‘information revolution’ and the historical discontinuity it implies, Agar focuses rather on
‘the humans who promoted machines’ and on the technocratic ‘vision of government’
that conditioned the adoption of office technologies, including the computer. Indeed, he
maintains, ‘[tlhe Civil Service, as a general-purpose universal machine, framed the language
of what a computer was and could do.™

As Cortada, Haigh and Agar suggest, the histories and continuing experience of the
various communities show that they wanted and expected different things from the com-
puter. They encountered different problems and levels of difficulty in fitting their practice
to it. As a result, they created different computers or (if we may make the singular plural)
computings. To do so, they had to determine which aspects of their practice were suitable
for automation, they had to build computational models of those aspects, and they had to
write the programs that implemented those models. None of this was straightforward,
except where it was trivial. From the case studies we do have, we can guess that it was a
matter of negotiation, both among practitioners about the nature of their practice and
between practitioners and the realities of the current technology, often in the shape of
non-practitioner technicians.

Until recently, histories of computing have largely ignored that process of negotiation,
and that should concern more than historians. From the early 1950s down to the present,
various communities of computing have translated large portions of our world — our
experience of it and our interaction with it — into computational models to be enacted on
computers, not only the computers that we encounter directly but also the computers that
we have embedded in the objects around us to make them ‘intelligent’ or even, as Yorick
Wilks would have it, ‘companionable’. They have increasingly made computers the
medium of our working (in the broadest sense of the term) in the world. In doing so, they
have (re)shaped not only their own practice, but also computers and their adaptation by
others. So far, we know little of the process by which they have done it. We have the story
of where the physical devices came from, how they have taken their current form, and
what differences they have made. But we remain largely ignorant about the origins
and development of the dynamic processes running on those devices, the processes that
determine what we do with computers and how we think about what we do. The histories
of computing will involve many aspects, but primarily they will be histories of software.

WORLDS OF SOFTWARE

Historians of computing have only begun to tackle the history of software. We’ve stuck
pretty close to the machine. We know a great deal about the history of programming
languages and considerably less about the history of operating systems, databases and
other varieties of systems software. We have scarcely scratched the surface of applications
software, the software that actually gets things done outside the world of the computer
itself.

A recent conference at the Nixdorf Museum in Paderborn, Germany, attempted to map
the history of software, considering it as science, engineering, labour process, reliable
artefact and industry, with a look at the question of how one exhibits it in a2 museum.'
The focus lay on software and its production as general phenomena. What the conference
missed was software as model, software as experience, software as medium of thought and
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action, software as environment within which people work and live. It did not consider the
question of how we have put the world into computers.

That process has not been easy or straightforward. If it appears so, it is because so far
we have concentrated on the success stories and told them in a way that masks the
compromises between what was intended and what could be realised. Programming is
where aspiration meets reality. The enduring experience of the communities of computing
has been the huge gap between what we can imagine computers doing and what we can
actually make them do. There have been (and continue to be) some massive failures in
software development, which have cost money, time, property and even lives. Indeed,
since the late 1960s people in the field have spoken of a ‘software crisis’. Yet, except for
Frederick P. Brooks’s famous Mythical Man-Month, we do not have substantive accounts of
those failures, not even in the software engineering classroom, where we might expect to
find them. As software engineer/historian James Tomayko points out, other branches of
engineering learn from their mistakes.!® As Henry Petroski puts it in the title of one of his
books on the role of failure in design, ‘to engineer is human’.!” Software will look more
human when we take seriously the difficulties of designing and building it.

Let me say a bit more about the ‘software crisis’. It emerged in the late 1960s as an
increasing number of large projects experienced large cost overruns, missed deadlines and
failures to meet specifications. Some had to be cancelled altogether. One response was
calls for a discipline of ‘software engineering’ that would, in the words of a deliberately
provocative definition, base ‘software manufacture . . . on the types of theoretical founda-
tions and practical disciplines that are traditional in the established branches of engineer-
ing’.!"® (That is, of course, a historical programme.) At first, practitioners sought a solution
in the computer and looked to the improvement of their tools and at more effective
project management. A great deal of effort went into developing high level programming
languages and diagnostic compilers for them. The languages were specifically designed
to foster good programming practices (read, proper ways to think about programming).
Similatly, practitioners sought to bring the experience of industrial engineering to bear on
software production, with an eye toward automating it in the form of a ‘software factory’,
a programming environment that would leave the programmer little choice but to do it
right.

The tools clearly got better. Once a project gets down to the actual programming, things
go relatively smoothly. But, as Brooks has since pointed out, that is not where the real
problems have lain, or rather problems at that level were only ‘accidental’.’” Almost from
the start studies showed that the bulk of the errors occurred at the beginning of projects,
before programming ever began (or should have begun). The errors were rooted in failures
to understand what was required, to specify completely and consistently how the system
was supposed to behave, to anticipate what could go wrong and how to respond, and so
on. As many as two-thirds of the errors uncovered during testing could be traced back to
inadequate design; the longer they remained undetected, the more costly and difficult they
were to cortrect.

Design is not primarily about computing as commonly understood, that is, about
computers and programming. It is about modelling the world in the computer, about com-
putational modelling, about translating a portion of the world into terms a computer can
‘understand’. Here it may help to go back to the protean scheme to recall what computers
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do. They take sequences, or strings, of symbols and transform them into other strings. The
symbols and the strings may have several levels of structure, from bits to bytes to groups
of bytes to groups of groups of bytes, and one may think of the transformations as acting
on particular levels. But in the end, computation is about rewriting strings of symbols.

The transformations themselves are strictly syntactical, or structural. They may have a
semantics in the sense that certain symbols or sequences of symbols are transformed in
certain ways, but even that semantics is syntactically defined. Any meaning the symbols
may have is acquired and expressed at the interface between a computation and the world
in which it is embedded. The symbols and their combinations express representations of
the world, which have meaning to us, not to the computer. It is a matter of representations
in and representations out. What characterises the representations is that they are opera-
tive. We can manipulate them, and they in turn can trigger actions in the world. What we
can make computers do depends on how we can represent in the symbols of computation
portions of the world of interest to us and how we can translate the resulting transformed
representation into desired actions. We represent in a variety of forms a Boeing 777 — its
shape, structure, flight dynamics, controls. Our representations not only direct the design
of the aircraft and the machining and assembly of its components, but they then interac-
tively direct the control surfaces of the aircraft in flight. That is what I mean by ‘operative
representation’.

So putting a portion of the world into the computer means designing an operative
representation of it that captures what we take to be its essential features. That has proved,
as | say, no easy task; on the contrary it has proved difficult, frustrating and in some cases
disastrous. It has most recently moved to a high priority problem at the US National
Science Foundation, which has announced a programme aimed at exploring the ‘science of
design’® Where that will go is anyone’s guess, and I'm a poor prognosticator. What is
clear is that historians of computing have inherited the problems to which it is addressed.
If we want critical understanding of how various communities of computing have put their
portion of the world into software, we must uncover the operative representations they
have designed and constructed, and that may prove almost as difficult a task.

READING MACHINES, REAL AND VIRTUAL

What makes it difficult is precisely that the representations are operative. Ultimately it is
their behaviour rather than their structure (or the fit between structure and behaviour) that
interests us. We do not interact with computers by reading programs; we interact with
programs running on computers. The primary source for the historian of software is the
dynamic process, and, where it is still available, it requires special techniques of analysis.
Programs and processes are artefacts, and we must learn to read them as such.

A brief digression is necessary here. My return to computing occurred when I started
teaching the history of technology. Up to that point I had taught history of science from
Antiquity through the Scientific Revolution, and I based my courses almost entirely on
primary sources. My students read Plato, Aristotle, Aquinas, Copernicus, Galileo and so
on. So I'looked for primary sources on mills, steam engines, automobiles and computers,
and had great difficulty in finding what I wanted. It soon dawned on me that I was looking
for the wrong thing in the wrong place. The sources I needed were not texts about these
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machines, but the machines themselves, to be found not in a library but in a museum.
Technology is not a literate enterprise, but a visual, tactile one. Its practitioners think not
with words but, as Derek de Solla Price so deftly phrased it, ‘with their fingertips’. Henry
Ford put it another way:

There is an immense amount to be learned simply by tinkering with things. It is not possible
to learn from books how everything is made — and a real mechanic ought to know how nearly
everything is made. Machines are to a mechanic what books are to a writer. He gets ideas from
them, and if he has any brains he will apply those ideas.”!

What holds for the practitioners is true also of those who use technologies, or as Langdon
Winner insists, live them.”? We do not read about them, we act with, in and through them.
Conversely, their design assumes that we know certain things or can learn them. They are
artefacts of our e/ture, embodying both its explicit and its tacit knowledge.

In the realm of computing, the notion of reading artefacts transfers more or less readily
to the machine itself. In 7he Soul of a New Machine, Tracy Kidder relates the story of
computer designer Tom West sneaking a peck at a competitor’s design:

Looking into the VAX, West had imagined he saw a diagram of DEC’s corporate organization. He
felt that the VAX was too complicated. He did not like, for instance, the system by which vatious
parts of the machine communicated with each other; for his taste, there was too much protocol
involved. He decided that VAX embodied flaws in DEC’s corporate organization. The machine
expressed that phenomenally successful company’s cautious, bureaucratic style. Was this true?
West said it didn’t matter, it was a useful theory.®

But reading the software is even trickier, because we can’t ‘pull the boards’. We must learn
to interrogate the artefact in action, and here we need help from sociologists, anthropolo-
gists and the HCI community, whose studies of current users may suggest interpretive
approaches to the past.

Here historians of software face a problem caused by the rapid rate of obsolescence that
has characterised computing from the outset. For the eatly period that particularly interests
us, we cannot read the dynamic artefacts, because we no longer have the platforms, the
machines and operating systems, on which the software ran. In some cases the disappear-
ance of the platform has meant the loss of the software as well.? Given present trends,
there is no reason to think that will not be the case with more recent software unless we
embark on a systematic programme to archive software and hardware in ways that allow
retrieval of the dynamic artefact. It is a bit ironic that in an age that seems overwhelmed by
information, the history of the technology designed to manage it will itself be hampered
by lack of information, as a crucial body of primary sources is lost to us through the
disappearance of the machines on which they were enacted.

In the absence of the running process, the next best thing is the program text, the
source code. Again, as historians we inherit the unsolved problems of the subject we are
studying. As Christopher Langton, lead proponent of Artificial Life, has put it:

We need to separate the notion of a formal specification of a machine — that is, a specification of
the /logical structure of the machine — from the notion of a formal specification of a machine’s
behaviour — that is, a specification of the sequence of transitions that the machine will undergo.
In general, we cannot derive behaviours from structure, nor can we derive structure from
behaviours.?®
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Despite impressive work in the mathematical theory of program syntax and semantics, we
have no means of deriving the dynamic process from the static program, in the sense of
being able to determine from the latter the state of the former at some particular point in
the computation. Perhaps that should not surprise us. If we did, we would not need the
computet.

Nonetheless, if we have the program, we can try to reconstruct from it what the process
looked like, and we can learn to analyse the text to discover the structures and operations
of the computational model and, through them, to gain some sense of the understandings
and intentions of its designers. Alan Kay, the creator of Smalltalk, offers an example
through his own discovery of how the language Simula worked. It was his first day as a
graduate student at the University of Utah:

Head whitling, I found my desk. On it was a pile of tapes and listings, and a note: “This is the Algol
for the 1108. It doesn’t work. Please make it work.” The latest graduate student gets the latest dirty
task.

The documentation was incomprehensible. Supposedly, this was the Case Western Reserve 1107
Algol — but it had been doctored to make a language called Simula; the documentation read like
Norwegian transliterated into English, which in fact was what it was. There were uses of words like
activity and process that didn’t seem to coincide with normal English usage.

Finally. another graduate student and I unrolled the listing 80 feet down the hall and crawled over
it yelling discoveries to each other. The weirdest part was the storage allocator, which did not obey
a stack discipline as was usual for Algol. A few days later, that provided the clue. What Simula was
allocating were structures very much like instances of Sketchpad.®

Kay’s experience suggests what faces the historian, and there is again some irony in it. It
has been the common lament of management that programs are built by tinkering and that
little of their design gets captured in written form, at least in a written form that would
make it possible to determine how they work or why they work as they do rather than in
other readily imaginable ways. Moreover, what programs do and what the documentation
says they do are not always the same thing. Here, in a very real sense, the historian inherits
the problems of software maintenance: the farther the program lies from its creators, the
more difficult it is to discern its architecture and the design decisions that inform it.

But at least we have the program texts. Or do we? It is not clear, in part perhaps
because for many of the communities of computing outside computer science we have
not yet begun to look. When government and industry went looking in the late 1990s in
anticipation of Y2K| the results were dismaying. But that is another, different problem.

HISTORY, COMPUTING AND THE HUMANITIES

What does this mean for digital scholarship and our digital future? Let me go back to the
beginning. Look at the picture in Fig. 6 of the EDSAC at Cambridge, the first operational
computer, and then look at a laptop. A room full of electronic equipment has become a
typewriter connected to a TV screen by a black box, with sockets in the back for attach-
ments. What separates the two devices is not evolution but social construction, a lot of it.
The difference is not the result so much of working out principles as of pursuing the
possibilities of practice.
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6 The EDSAC, built by Maurice Wilkes and his team at Cambridge University, 1949

As striking as is the contrast in external form of the two computers, what really
separates the EDSAC from my laptop is something on the order of three gigabytes of
stored programs, a large number of which simply establish a platform for the programs
that I use to do what I want. For the lecture on which this paper is based, I ran a single
application on my laptop to project images onto a screen. Enabling that application were
some two dozen processes, cach in itself a program of some complexity. All these
programs reflect the histories of the communities from which they come. The operating
system, for example, embodies the history of corporate organisations designed to distrib-
ute responsibilities and authority in a hierarchical structure. The graphical user interface,
known for its main features as “WIMP’ (windows, icons, mouse, pull-down menus),
emerged from the human augmentation community, with its roots in behaviourist percep-
tual psychology and military command and control systems. Microsoft PowerPoint reflects
the adaptation of computer assisted design to the needs of management systems and the
corporate boardroom. The communications community provides the networking. And so
on. To ‘use’ a ‘personal’ computer today is, despite its much hyped origins in the counter-
culture, to work in a variety of environments created by a host of anonymous people who
have made decisions about the tasks to be done and the ways they should be done. As
most of us use a computer, it is no more personal than a restaurant: you can have anything
you want on the menu, cooked the way the kitchen has prepared it.

Is that bad? No, it is the nature of a technological system. It is the price of computing
power. I've worked on a computer without an operating system or a library of programs.
The experience drove me from the field. I'm as happy to use the current computing
technology as I am to fly on a 777, drive a maintenance-free automobile, or wear no-iron
shirts. It is not bad, but it does have implications for the critical, reflective use of comput-
ers, especially in the humanities. It means that the computer as tool and medium is not
neutral, but rather informs (or, as Bolter and Grusin put it, re-mediates) the work that one
does with it, if only by setting possibilities and limits on what can be done (or even
thought). It calls for critical awareness. Like the historians of computing, digital scholars
must learn to read software to elicit the history and practice that it embodies.
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We must be aware because, by and large, we in the humanities have had to borrow our
computing from other communities. In the beginning, we simply couldn’t afford it on our
own. Since then, we have not formed a significant community giving shape to computers
by creating our own computing — except perhaps most recently in the design of markup
languages and the semantic web. My experience at Princeton is arguably typical. Until the
mid 1980s, the scientists and engineers owned the mainframe and the minicomputers,
allowing the humanists a bit of time on the side. The personal computer came onto the
Princeton campus in the mid 1980s as part of an IBM sponsored project to make the PC
an educational resource. IBM supplied machines and basic software, the universities were
supposed to generate applications for teaching and research. But, unless the project aimed
at a single target, such as a graphically displayed database of US census data down to the
county level, not much happened. One reason was that we were trying to develop educa-
tional applications using software designed for business. The same was true in the primary
and secondary schools, indeed to a greater degree, since they lacked any resources for
independent development. (I happened to be a member of our local school board at the
time, so could observe developments at both levels.) Either one used the educational
software packages of the day (the less said about them, the better), or one tried to adapt to
the classroom software originally developed for the business office. Tools embody history.
We were trying to work with other people’s histories, unaware of what that meant.

Our own history poses a difficult challenge to the computing community. At a work-
shop for a large project, the National Initiative to Network the Cultural Heritage
(NINCH), jointly sponsored by the American Council of Learned Societies and the
National Academy of Engineering, humanists and computer scientists gathered to talk
about what humanists do, how they do it, what they’d like to be able to do and how they’d
like to be able to do it, and how those wishes might constitute research projects for the
computer scientists. I was moderating the discussion among the historians and sensed an
uncharacteristic humility among my colleagues, who seemed worried about finding some-
thing difficult enough to get the attention of the computer scientists. I tried to reassure
them that should not be a concern. Our problems are far too difficult for the computer
scientists. We need to find something simple enough for them, yet interesting enough for
us. Our main tasks involve the sophisticated use of a natural language, or even of several
natural languages; the discerning of subtle patterns of shape, colour, texture and sound.
Ours is an enterprise of metaphor, analogy, allusion, ambiguity, etc. These are not things
that have so far lent themselves to computational modelling. The humanities involve those
aspects of human thinking and cognition that have so far confounded artificial intelligence.

The future of digital scholarship depends on whether we can now design computational
models of the aspects of the world that most interest us. That, in turn, calls for reflection
on our current practice. In seeking to do things in new ways with a computer, it is useful
to clarify how we do them now and how we came to do them that way and not otherwise.
Indeed, as Willard McCarty has pointed out, grappling with new technology reminds us
that we have been using technology all along: pencil, pen and paper are technologies, and
all forms of calculation involve instruments.”” In Remediation, a study of the digital medium
in the arts and literature, Jay Bolter and Richard Grusin play on the ambiguity of the title,
arguing that every re-mediation, every transfer of an activity from one medium to another,
tests on a claim of remediation, of making things better.”® What are we seeking to remedy
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in the re-mediation of scholarship in the humanities? What do we want to do that,
to borrow from Andrew Marvell, we have lacked ‘world enough and time’ to do? The
computer, a coy mistress indeed, offers to supply that world and time, provided that we
know how to do what we want and can explain it in terms the computer can understand.
Humans have to think hard about both questions. Compared to them, the programming
will be easy.
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