
Emulation and computing history
The Computer History Simulation Project and SIMH

Skill Level: Intermediate

M. Tim Jones (mtj@mtjones.com)
Senior Architect

22 Mar 2011

The simplest computing devices we use today have more processing capability than
the most capable computing systems of yesterday. For example, the VAX 11/780
delivered around 0.5 MIPS in the early 1980s. Compare that to an IBM zEnterprise™
196 (z196) mainframe of today, which can support well over 52 KMIPS. However, we
can learn a lot from early computing history. If you've ever wanted to boot an IBM
1130, PDP-11, or MITS Altair, then the Computer History Simulation Project is just
what you've been looking for.

In late 1978, as a birthday gift, I received my first computer. It was a TRS-80 model
1 with 4KB of memory and cassette tape mass storage, which I later upgraded to an
Exatron stringy floppy. Within a few weeks, my BASIC programming skills had
evolved to the point that I had exceeded the available memory for my
yet-to-be-completed program: a sad day. Little did I know 30 years later, as an
embedded firmware engineer, I would still spend much of my time trying to squeeze
more code and data into a smaller address space.

Computer history is fascinating, as are some of the early computers that were
developed. Many of the early machines were rudimentary calculators, such as
Konrad Zuse's Z1, which he invented in 1931, and going back even farther, Herman
Hollerith's mechanical sorting machine that was used in the 1890 census; six years
later his is one of the companies that merged and became IBM. Zuse also
introduced the first algorithmic programming language called Plankalkül for his Z4
computer. The Z4 was electromechanical (relay-based), supported 64 words of
memory, and ran at a whopping 40Hz (at 4KW of consumed power). Professor John
Atanasoff developed the first digital computer, which he began in 1937 and
completed in 1941, that used binary for computation at Iowa State College. The

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 1 of 13

mailto:mtj@mtjones.com
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

ideas of the Atanasoff-Berry Computer (ABC) were used in the first general-purpose
electronic computer, ENIAC. Programming these systems would be foreign to most
of us, who grew up with Pascal, C, or LISP. For example, programming the first
ENIAC required physical rewiring to change its programming. Wikipedia provides
fascinating information on computer evolution (see Resources).

The Computer History Simulation Project

Like my old TRS-80, which sits lifeless in a dusty box, computing history can easily
slip away. Luckily, there are folks like Bob Supnik who have invested time and
energy into rescuing some of computing's most important history. Supnik created the
Computer History Simulation Project as a way to restore significant computing
systems through simulation. Supnik's project, which has contributions from people
around the world, has resulted in a multi-system framework called SIMH that
simulates a large number of computing systems. Some of the systems include the
Data General Nova, DEC's PDPs and VAX, IBM 1401 and 7090/7094, Interdata
systems, and even the MITS Altair systems (for both 8080 and Z80). See Resources
for other simulated systems.

The SIMH architecture

Let's first examine the general architecture of SIMH, and then explore some sample
usages of SIMH to boot older, simulated hardware.

More on SIMH architecture
The gory details of SIMH can be found in a document called
"Writing a Simulator for the SIMH System." This document presents
the major functions of SIMH and details of the various machines
that are simulated (see Resources).

SIMH is a framework into which system emulators are built. When you explore the
hierarchy of the SIMH source tree, you'll find a set of general simulator files, and
then a set of subdirectories that contains machine simulations (or classes of
machine simulations). As shown in Figure 1, a simulator is made up of the simulator
control package (containing such things as the simulator console, terminal and file
I/O libraries, and timers and sockets) and a set of devices. The spirit of the devices
is a set of registers to maintain state about the device (while it's active) and units
representing data sets (commonly files that are used to represent the device). Not all
devices must be present, for example, networking may not be suitable.

Figure 1. Basic architecture of SIMH

developerWorks® ibm.com/developerWorks

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 2 of 13

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

When a virtual machine starts on the simulator, the simulator control package first
identifies the particulars of the environment (array of devices, binary loader routine,
instruction set simulator, and so on). As you'll see shortly, after the simulator is
started, you can interact with it to boot a virtual machine (or place this interaction in a
file to simplify the steps). The simulator in essence is a debugger, so you can also
set breakpoints and interact with the devices, CPU, and memory. Considering the
amount of functionality provided in SIMH, the code is easily readable and not as
large as you may expect.

Setting up SIMH

Let's explore how SIMH can return you to the early days of computing. This section
first explains how to install and build SIMH, then discusses software kits.

Installing SIMH

The following session illustrates how to download and build SIMH. It demonstrates
version 38.1 of SIMH, although you should check the website to see whether the
package has evolved. As noted in Listing 1, I needed to create the ./BIN subdirectory
before the package could be made.

Listing 1. Installing and building SIMH

$ mkdir simh ; cd simh

$ wget http://simh.trailing-edge.com/sources/simhv38-1.zip

$ unzip simhv38-1.zip
$ mkdir BIN

ibm.com/developerWorks developerWorks®

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 3 of 13

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

$ make -f makefile

After you complete the steps in Listing 1, you'll have a set of binaries in the ./BIN
subdirectory representing the individual simulators (such as ibm1130 and vax780).

Software kits

In the preceding step, you built the SIMH simulator. However, for it to be useful, you
need software (operating systems and applications) for these simulators. Because
these systems operated with paper tape and magnetic tapes, the software
represented by those media has been repackaged into files for ease of use. As part
of these demonstrations, you'll explore the necessary software kits and learn where
to download them.

Navigating the simulator

When you start a simulator (named for the machine that it's simulating, such as
altairz80), you'll see a sim> prompt. This prompt tells you that you're in the base
simulator, which you can then configure to bring up the simulated target. This article
explores some of the many commands that can be executed. You can use help to
see the extensive list. It's also important to note that while emulating one of the
support machines, you can use Ctrl-E to return you to the simulator. From there, you
can set breakpoints, examine registers, look at the simulator event queue, and more.

Using SIMH

Now that you have a basic understanding of SIMH, let's explore its use with a variety
of computer systems. You'll look at LISP on an IBM 1130 system, UNIX® on the
Interdata 32-bit system, CPM on the MITS Altair machine, and Focal on a PDP-15.

IBM 1130

The IBM 1130 system was a popular computing system that focused on lower-cost
markets. It relied on punched cards and paper tape but also used inexpensive disk
storage (1MB total). The disk stored the operating system and data.

The 1130 system was introduced in 1965, when the primary programming language
was FORTRAN (whose compiler, written entirely in assembly language, ran with
only 4000 words of memory). It used a 15-bit word-based address space, limiting the
machine to 64KB of core memory.

One of the interesting aspects of the IBM 1130 system was its support for alternative
languages. In addition to FORTRAN, the 1130 could be programmed using APL and
RPG. Guy Steele, who had access to an 1130 at Boston's Latin (high) school, wrote
a LISP interpreter that we can still use today. Let's begin by getting the LISP

developerWorks® ibm.com/developerWorks

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 4 of 13

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

interpreter from the site that maintains the 1130, ibm1130.org (see Listing 2). Note
that I assume that you're in the ./simh subdirectory, where you installed SIMH.

Listing 2. Installing the LISP interpreter software kit

$ mkdir kits/ibm1130 ; cd kits/ibm1130
$ wget http://media.ibm1130.org/lisp.zip
$ unzip lisp.zip

This emulation hides many of the details of working with SIMH but is an interesting
historical peek at one use of the 1130. This demonstration is a batch operation in
which you specify a job to the simulator, whose output is then emitted to a list file.
Your job is a very simple use of the LISP interpreter (which you can see in the
output). Listing 3 provides the batch session.

Listing 3. Using the LISP interpreter with the IBM 1130 simulator

$../../BIN/ibm1130 job lisptest

IBM 1130 simulator V3.8-1
PRT: creating new file
Loaded DMS V2M12 cold start card

Wait, IAR: 0000002A (4c80 BSC I ,0028)
sim> quit
Goodbye
$ more lisptest.lst

PAGE 1

// JOB 1234

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 1234 1234 0000

V2 M12 ACTUAL 32K CONFIG 32K
^L
PAGE 1

// JOB

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 1234 1234 0000

V2 M12 ACTUAL 32K CONFIG 32K

// XEQ LISP

***** 1130 LISP 1.6 ***** BOSTON LATIN SCHOOL ***** LITHP ITH LITHTENING...

(SETQQ A (X Y Z))

(X Y Z)

(CAR A)

ibm.com/developerWorks developerWorks®

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 5 of 13

http://ibm1130.org
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

X

(CDR A)

(Y Z)

(PLUS 1 2 3)

6

(QUIT)

***** 1130 LISP 1.6 ***** END OF RUN ***** THO LONG, COME AGAIN THOON
$

In Listing 3, you start the IBM 1130 simulator and specify a job to perform. Under the
covers, the code configures the simulator for the disk (where it loads the LISP
interpreter), the card reader (where it reads the job), and the printer (where it emits
the output). Your job appears in Listing 4 (which is lisptest.job in the software kit).
You can find the output of the job in the same subdirectory as the job name with the
.lst suffix.

Listing 4. The file lisptest.job

// JOB
// XEQ LISP
(SETQQ A (X Y Z))
(CAR A)
(CDR A)
(PLUS 1 2 3)
(QUIT)

IBM1130.org developed and maintains the IBM 1130 software kit. At this site, you
can also find an APL deck (in addition to FORTRAN and RPG).

Interdata 32 bit with UNIX V6

Interdata developed a set of 16- and 32-bit minicomputers beginning in 1966 (in
1973 becoming part of Perkin-Elmer). The Interdata-7, introduced in 1974, was one
of the first 32-bit computers. The architecture for the Interdata was loosely based on
the IBM System/360 mainframe architecture. This example looks a bit deeper at how
the machine is brought up from the perspective of the simulator (configuring options
through the simulator).

In Listing 5, you download the UNIX version 6 image and extract it into a
subdirectory under kits. When you extract the download, you start the Interdata
simulator and begin configuration. You first enable the console terminal (TTP) and
associate the programmable asynchronous line controller (PAS) and magnetic tape
controller (MT) to avoid device number conflicts.

developerWorks® ibm.com/developerWorks

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 6 of 13

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Your boot device is the cartridge disk controller (DP), which you associate with the
external file from the software kit (iu6_dp0.dsk). With the boot disk defined, you can
now boot this disk, which results in starting the UNIX V6 image. The Interdata was
one of the first ports of UNIX to a non-PDP system.

Listing 5. Simulating the Interdata 32b system with UNIX

$ mkdir kits/id_unix_v6 ; cd kits/id_unix_v6
$ wget http://simh.trailing-edge.com/kits/iu6swre.zip
$ unzip iu6swre.zip
$../../BIN/id32

Interdata 32b simulator V3.8-1
sim> set ttp ena
sim> set pas dev=12
sim> set mt dev=85
sim> att -e dp0 iu6_dp0.dsk
sim> boot dp0
?unix
Memory = 182.50 K

login: root
You have mail.
ls -la
total 361
drwxr-xr-x 9 root 272 Jun 4 00:16 .
drwxr-xr-x 9 root 272 Jun 4 00:16 ..
drwxr-xr-x 2 root 1104 Nov 14 1978 bin
drwxr-xr-x 2 root 784 Jun 4 01:07 dev
drwxr-xr-x 2 root 528 Nov 14 1978 etc
drwxr-xr-x 2 root 240 Jun 3 21:44 lib
-rw-r--r-- 1 root 552 Jun 3 20:48 mdl
drwxr-x--- 2 root 32 Aug 2 1978 mnt
drwxrwxrwx 2 root 144 Jun 4 15:38 tmp
-rw-r--r-- 1 root 424 Jun 4 00:27 tpboot
-rw-r--r-- 1 root 568 Jun 3 20:48 tuboot
-rw-r--r-- 1 root 728 Jun 3 20:48 uboot
-rw-r----- 1 root 52272 Jun 3 23:56 unix
-rwxrwxrwx 1 root 59236 Jun 4 01:21 unix.oxon
-rwxrwxrwx 1 rm 60852 Jun 4 01:44 unix.sydney
drwxr-xr-x 14 root 240 Jun 4 15:43 usr
#

As shown in Listing 5, after the system boots, you can interact with it in a way similar
to modern-day UNIX systems.

PDP-15 with FOCAL

DEC's last 18-bit system was the PDP-15, introduced in 1969. The PDP-15 was
implemented with TTL-integrated circuits, unlike earlier PDPs, which were built from
discrete transistors. The PDP-15 was compatible with the earlier PDP-9 and
included various advanced features, including memory protection and floating points.

Although the PDP-15 supported a variety of operating systems, one interesting use
of this machine is with the formula calculator (FOCAL) language. FOCAL was
originally written for the PDP-8 by Richard Merrill and could run in a system with only
3000 words of memory (12 bits), with 1000 words for the user program. FOCAL

ibm.com/developerWorks developerWorks®

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 7 of 13

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

required no operating system and was a complete environment in itself. The FOCAL
system is provided as a paper-tape image used in the binary loader format (see
Listing 6). After starting the PDP-15 simulator, you load the focal15 image and issue
a run to start. You're greeted with the FOCAL15 prompt, where you enter a short
FOCAL program and start it with the GO command.

Listing 6. Demonstrating FOCAL on a PDP-15

$../../BIN/pdp15

PDP-15 simulator V3.8-1
sim> load focal15.bin
sim> run

FOCAL15 V6B
*01.10 ASK "WHAT YEAR WERE YOU BORN?", BORN
*01.20 ASK "WHAT YEAR IS IT?", YEAR
*01.30 SET AGE=YEAR-BORN
*01.40 TYPE "YOU ARE ", AGE-1, " OR ", AGE, " YEARS OLD.", !
*GO
WHAT YEAR WERE YOU BORN?:1964
WHAT YEAR IS IT?:2010
YOU ARE 45.0000 OR 46.0000 YEARS OLD.
*
<Ctrl-E>
Simulation stopped, PC: 000221 (SPA)
sim> show dev
PDP-15 simulator configuration

CPU, idle disabled
CLK, 60Hz, devno=00
FPP
PTR, devno=01
PTP, devno=02
TTI, devno=03
TTO, devno=04
LP9, disabled
LPT, devno=65-66
RF, devno=70-72
RP, devno=63-64, 8 units
DT, devno=75-76, 8 units
MT, devno=73, 8 units
TTIX, lines=1, devno=40-47
TTOX
sim>

Also shown here is an interaction with the simulator. Press Control-E to exit the
simulation and return to the simulator framework console. At this point, you can
request that the devices be enumerated, which shows the various devices simulated
for this PDP-15 (floating-point processor, paper tape reader, paper tape punch, and
so on).

This example demonstrates another aspect of SIMH, where your image requires no
operating system and is interactive (differing from the earlier batch run on the IBM
1130 system).

MITS Altair with CP/M

developerWorks® ibm.com/developerWorks

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 8 of 13

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

The last demonstration of SIMH simulates the world's first minicomputer, the MITS
Altair. The Altair, designed in 1975, was based on the Intel® 8080 processor, with
only 256 bytes of memory. Despite its minimal capabilities, this model sold
thousands in the first month. Its bus, which became the S-100, was extensible
enough that numerous vendors developed cards for the 18-slot system (such as
serial cards and disk controllers), making it a useful computer.

Although there were computer systems designed before the Altair (some of which
were also based on the Intel 8008 processor), the Altair was powerful enough to be
useful (such as for running BASIC, one of the key languages being taught at the
time). It is widely credited as the spark that began the personal computer revolution.

Within SIMH, you can run a standard Intel 8080-based Altair or derivative Altair
systems using the Zilog Z80 or Intel 8086 processor. The simulated Altair also
provides some additional capabilities, such as banked memory. The software kit for
the Altair is one of the simplest ways to get Control Program for Microcomputers
(CP/M) running. In the example shown in Listing 7, you start the Altair simulator (in
this case, the Z80 processor variant), and then use the cpm2 script file to boot
CP/M. This script uses two disks (an operating system disk and an application disk)
to create the CP/M environment. With the CP/M environment created, you check out
the files that are available, and then run Microsoft basic to interpret the Eliza
program.

Listing 7. Demonstrating CP/M on the MITS Altair

$ mkdir cpm ; cd cpm
$ wget http://simh.trailing-edge.com/kits/psaltair.zip
$ unzip psaltair.zip
$../../../BIN/altairz80

Altair 8800 (Z80) simulator V3.8-1
sim> do cpm2

62K CP/M Version 2.2 (SIMH ALTAIR 8800, BIOS V1.17, 28-Apr-02)
A>dir
A: PIP COM : LS COM : XSUB COM : STAT COM
A: GO COM : RSETSIMH MAC : SYSCOPY COM : SHOWSEC COM
A: DIF COM : R COM : W COM : L80 COM
A: M80 COM : WM HLP : WM COM : CBIOSX MAC
A: FORMAT COM : SYSCPM2 SUB : DDTZ COM : DSKBOOT MAC
A: TSTART COM : ED COM : DDT COM : EX8080 MAC
A: LOAD COM : ASM COM : LU COM : MBASIC COM
A: ELIZA BAS : DUMP COM : CREF80 COM : EXZ80 MAC
A: UNERA COM : BOOT COM : OTHELLO COM : WORM COM
A: LADDER DAT : LADDER COM : ZSID COM : ZTRAN4 COM
A: SURVEY MAC : CPMBOOT COM : TSHOW MAC : TSTART MAC
A: TSTOP MAC : UNERA MAC : MOVER MAC : EX8080 SUB
A: EXZ80 SUB : CCP MAC : DSKBOOT COM : USQ COM
A: MC SUB : MCC SUB : BDOS MAC : RSETSIMH COM
A: TSHOW COM : TSTOP COM : UNCR COM : SURVEY COM
A: EX8080 COM : EXZ80 COM : COPY COM : SID COM
A: BOOT MAC : BOOTGEN COM : LIB80 COM : DO COM
A>
A>mbasic eliza.bas
BASIC-80 Rev. 5.21
[CP/M Version]

ibm.com/developerWorks developerWorks®

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 9 of 13

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Copyright 1977-1981 (C) by Microsoft
Created: 28-Jul-81
32824 Bytes free

ELIZA

CREATIVE COMPUTING
MORRISTOWN, NEW JERSEY

ADAPTED FOR IBM PC BY
PATRICIA DANIELSON AND PAUL HASHFIELD
BE SURE THAT THE CAPS LOCK IS ON

PLEASE DON'T USE COMMAS OR PERIODS IN YOUR INPUTS

HI! I'M ELIZA. WHAT'S YOUR PROBLEM?
? I'M IN LOVE WITH RETROCOMPUTING
DID YOU COME TO ME BECAUSE YOU ARE IN LOVE WITH RETROCOMPUTING
?

As you can see from the listing, the disk contains a large number of useful utilities,
such as a CP/M assembler (ASM.COM), a line editor (ED.COM), a pair of
debuggers (SID.COM for the Intel 8080 processor and ZID.COM for the Z80
processor), and even a screen editor (WM.COM).

Other emulation projects

Although SIMH is a great simulator for older computing systems, it's one in a
growing family of simulators and emulators. Examples of other historically interesting
emulators include Hercules, which emulates IBM mainframe computers (such as the
System/370, IBM System/390®, and IBM zSeries®) on commodity hardware.

Some emulators focus not on reviving historical hardware but instead on bringing
video games to life for which hardware may no longer exist. One of the most
interesting is the Multi-Arcade Machine Emulator (MAME). This emulator provides
system emulation for a large number of vintage video game hardware (including
arcade machines) and therefore provides an emulation of older processors and the
hardware environments that were built around them (data buses, storage devices,
audio and video hardware, and so on). Today, the MAME project provides emulation
for more than 4500 unique games. MAME is also the core of the
Multi-Emulator-Super-System (MESS), which emulates almost 500 unique consoles,
computers, and calculators.

You can also find simulators for specialized hardware, such as the Apollo Guidance
Computer (AGC) used in the Apollo lunar missions. A similar effort simulates the
launch vehicle digital computer (LVDC) that managed the firing of the rocket engines
during ascent into orbit. Although the LVDC was a computer designed from
transistors, the AGC was the first computer designed with integrated circuits. Both

developerWorks® ibm.com/developerWorks

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 10 of 13

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

had custom instruction sets, with programs designed in their raw machine code.

See Resources for more information on these and other emulators.

Going further

There's something really fascinating about retro-computing. Everything we have
today is derived from older computing systems, many of which no longer have
functioning hardware we can use. Thankfully, the SIMH project brings this hardware
(and operating systems and applications) back to life so that they can be enjoyed by
a new generation.

ibm.com/developerWorks developerWorks®

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 11 of 13

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Konrad Zuse's "Z" machines are well documented at the Technical University of
Berlin. You can read more about Zuse's Z3, Z4, and the first language, called
Plankalkül.

• This Wikipedia article on the evolution of the computer provides a fascinating
history of the silent race to build the computer and the various schemes that
were defined (from Konrad Zuse's early Z machines to the secret British
Colossus computers used to break German codes and beyond).

• As of 2010, the inventor of the first digital computer to automate computation
has been a battle ground. Although most of us think of ENIAC and the
University of Pennsylvania, there was prior work that has had little mention. In
the late 1930s, John Atanasoff and Clifford Berry began building the first
computer, now called ABC.. A new book has been published that looks at this
early history from Jane Smiley, who was covered recently in this article from
Wired: Pulitzer Prize-Winning Novelist Tells the Tale of the World's First
Computer. In addition to covering some of the history, Smiley uncovers some of
the political, psychological, and corporate drama behind this invention.

• In 1971, Intel released the first commercially available microprocessor in a chip
called the 4004. The 4004 processor was a 4-bit CPU that could execute
92,000 instructions per second. Its successor was the 4040 processor (released
in 1974), which had an expanded instruction set, program memory, register set,
and stack.

• The Computer History Simulation Project implements simulators for a large
number of computing systems. You can see the list of more than 30 significant
systems at the project's website.

• In the document Writing a Simulator for the SIMH System, you can learn more
about the simulator architecture as well as some of the details of the various
simulated machines. You can also read through this presentation from Bob
Supnik titled SIMH: Forward into the Past for additional information, including
how historical systems are understood for simulation.

• Peter Schorn maintains the Altair emulator for SIMH and a website that has a
tremendous amount of information and source for the Altair. At his site, you can
find a large list of operating systems for the Altair, alternative programming
languages, and other applications.

• Hercules is an open source emulator for a variety of IBM mainframes (including
the System/370, ESA/390, and z/Architecture). Hercules can be used on a
variety of host operating systems, including Linux® and FreeBSD.

• This article discussed other emulators that focus on specialized electronics,

developerWorks® ibm.com/developerWorks

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 12 of 13

http://user.cs.tu-berlin.de/~zuse/Konrad_Zuse/index.html
http://user.cs.tu-berlin.de/~zuse/Konrad_Zuse/en/rechner_z3.html
http://user.cs.tu-berlin.de/~zuse/Konrad_Zuse/en/rechner_z4.html
http://user.cs.tu-berlin.de/~zuse/Konrad_Zuse/plank.html
http://en.wikipedia.org/wiki/Computer
http://www.wired.com/magazine/2010/11/mf_smiley/
http://www.wired.com/magazine/2010/11/mf_smiley/
http://en.wikipedia.org/wiki/Intel_4004
http://en.wikipedia.org/wiki/Intel_4040
http://simh.trailing-edge.com/
http://www.schorn.ch/cpm/intro.php
http://www.hercules-390.org/
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

such as the AGC. The Virtual AGC (and related emulators) preserves another
interesting aspect of computing systems. You can learn more about the AGC
and its history in Journey to the Moon: The History of the Apollo Guidance
Computer.

• Game emulators are an interesting area of development. Although the
emulators may be freely available, the ROMs that provide the games are still
owned by the license holders. Make sure to check out the relevant licenses
before downloading or using downloaded ROMs. In many cases, these older
games can be purchased to run on newer hardware. The Multi-Arcade Machine
Emulator is one of the most interesting projects, in addition to the
Multi-Emulator Super-System (which uses MAME at its core). You can also find
a list of video game console emulators and a larger list of emulators at
Wikipedia.

• The SIMH User's Guide presents a large amount of information about the SIMH
implementation as well as the commands that can be used in the simulator
framework. You can also find more information on other emulator projects
(including computing system restoration) at the Computer History and
Simulation Links.

Discuss

• Check out developerWorks blogs and get involved in the developerWorks
community.

About the author

M. Tim Jones
M. Tim Jones is an embedded firmware architect and the author of
Artificial Intelligence: A Systems Approach, GNU/Linux Application
Programming (now in its second edition), AI Application Programming
(in its second edition), and BSD Sockets Programming from a
Multilanguage Perspective. His engineering background ranges from
the development of kernels for geosynchronous spacecraft to
embedded systems architecture and networking protocols
development. Tim is a software architect and author in Longmont,
Colorado.

ibm.com/developerWorks developerWorks®

Emulation and computing history Trademarks
© Copyright IBM Corporation 2011 Page 13 of 13

http://www.ibiblio.org/apollo/
http://www.amazon.com/Journey-Moon-History-Guidance-Computer/dp/156347185X
http://www.amazon.com/Journey-Moon-History-Guidance-Computer/dp/156347185X
http://en.wikipedia.org/wiki/MAME
http://en.wikipedia.org/wiki/MAME
http://en.wikipedia.org/wiki/MESS
http://en.wikipedia.org/wiki/List_of_video_game_console_emulators#Arcade
http://en.wikipedia.org/wiki/List_of_emulators
http://bitsavers.trailing-edge.com/simh.trailing-edge.com/links.html
http://bitsavers.trailing-edge.com/simh.trailing-edge.com/links.html
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	The Computer History Simulation Project
	The SIMH architecture
	Setting up SIMH
	Using SIMH
	Other emulation projects
	Going further
	Resources
	About the author

